期刊文献+

基于最小二乘法的张量积Said-Ball曲面降多阶逼近 被引量:1

New Method of Approximate Multi-degree Reduction of Tensor Product Bézier Surfaces
下载PDF
导出
摘要 给出张量积Said-Ball曲面降多阶逼近的一种方法.该方法根据原张量积Said-Ball曲面Pn,m(u,v)与降多阶张量积Said-Ball曲面Qn1,m1(u,v)(n1≤n-1,m1≤m-1)在最小二乘范数下的距离函数在单位正方形[0,1]×[0,1]上取最小值,从而得到了用矩阵表示的降多阶张量积Said-Ball曲面Qn1,m1(u,v)的控制顶点{qij}in1=,0,m1j=0的显示表示式.在降多阶过程中,分别考虑了带角点高阶插值条件和不带角点插值条件的情形.文末附有数值例子,并将本文方法与参考文献(9)的方法做了比较. This paper offers a new method for approximate multi-degree reduction of tensor product Said-Ball surfaces, which is based on the minimizing the distance function between Pnm (u, v) and Qn1, m1 (u, v) (n1≤n1 - 1, m1≤m - 1) over the unit square [0,1]×[0,1] in the sense of least squares normal (L2), which gives the explicit representation of control points {qij}i^n1=0,^.m}=0 of the reduced multi-degree tensor product Said-Ball surface Qn1, m1 (u, v). During the multi-degree reduction process, we also consider two cases, one has the constraint of high-order interpolations over corners and another has on any constraint. The examples show that the multi-degree reduction surfaces obtained by our method have better approximation than that of the current methods.
作者 张莉 唐烁
出处 《大学数学》 北大核心 2006年第5期67-72,共6页 College Mathematics
基金 合肥工业大学校基金(061007F)
关键词 张量积Said-Ball曲面 降多阶 角点插值 Tensor product Said-Ball surfaces multi-degree reduction corner interpolation
  • 相关文献

参考文献7

二级参考文献6

共引文献25

同被引文献12

  • 1郭清伟,朱功勤.张量积Bézier曲面降多阶逼近的方法[J].计算机辅助设计与图形学学报,2004,16(6):777-782. 被引量:18
  • 2张莉,唐烁,陈国琪.基于广义逆的张量积Said-Ball曲面降多阶逼近[J].合肥工业大学学报(自然科学版),2005,28(2):216-219. 被引量:2
  • 3Bohem W,Farin G,Kahman J.A survey of curve and surfaces methods in CAGD[J].Computer Aided Geometric Design,1984,1(1):1-60.
  • 4Barnhill RR.Surface in computer aided geometric-design:a survey with new results[J].Computer Aided Geometric Design,1985,2(1/3):1-17.
  • 5Danneberg L,Nowacki H.Approximate conversion of surface representations with polynomial bases[J].Computer Aided Geometric Design,1985,2(2):123-131
  • 6Hoschek J. Approximate conversion of spline curvcs [J].Computer Aided Geometric Design, 1987, 4 (1): 59--66.
  • 7Lachance M A. Chebyshev economization for parametric surfaces [J]. Computer Aided Geometric Design, 1988, 5 (3):195-208.
  • 8Eck M. Degree reduction of Bezier curves [J]. Computer Aided Geometric Design, 1993, 10 (4) : 237--251.
  • 9Hu Shimin, Sun Jiaguang, Jin Tongguang, et al. Approximate degree reduction of Bezier curves [J]. Tsinghua Science and fechnology, 1998, 3 (2): 997-1000.
  • 10Chen Guodong, Wang Guojin. Multi-degree reduction of tensor product Bezicr surfaces with condilions of corners interpolations[J]. Science In China (Series F), 2002,45 (1):51--57.

引证文献1

二级引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部