期刊文献+

一类二阶非线性泛函微分方程解的振动性 被引量:2

Oscillatory behavior of solutions of certain second order nonlinear differential equation
下载PDF
导出
摘要 讨论了一类二阶非线性泛函微分方程(a(t)y(′t)σ)′+q(t)f(y(τ(t)))g(y(′t))=0,t≥t0,σ是分母为奇数的正有理分数时方程解的振动性,得到此类方程的解振动的充分性判据,改进并推广了已有文献中的相应结论. Oscillatory behavior of solutions to the second order nonlinear functional ditterential equation (α(t)y'(t)σ)'+q(t)f(y)τ(t)))g(y'(t))=0,t≥t0 was discussed, of which σ is a positive quotient of integer over odd integers, and some new sufficient conditions were established for the oscillatory, which extended and improved the corresponding results in many known literatures.
作者 陈燕芬
出处 《安徽大学学报(自然科学版)》 CAS 北大核心 2006年第6期19-21,共3页 Journal of Anhui University(Natural Science Edition)
基金 韩山师范学院重点课题基金资助项目(FC200507)
关键词 非线性 微分方程 振动性 nonlinear differential equation oscillation
  • 相关文献

参考文献5

二级参考文献19

  • 1侯新华,厉亚.二阶非线性泛函微分方程解的振动性与渐近性[J].湖南城市学院学报(自然科学版),2004,13(4):44-45. 被引量:15
  • 2[1]Rogovchenko Y. V., Oscillation Criteria for Certain Nonlinear Differential Equations [J], J. Math. Anal.Appl., 1999, 229(2): 399-416.
  • 3[2]Hameclani G. G., Krenz G. S., Oscillation Criteria for Certain Second Order Differential Equations [J], J.Math. Anal. Appl., 1990, 149(1): 271-276.
  • 4[3]Grace S. R., Lalli B. S., An Oscillation Criterion for Certain Second Order Strongly Sublinear Differential Equations [J], J. Math. Anal. Appl., 1987, 123(2): 584-588.
  • 5[4]Philos Ch G., Oscillation Theorems for Linear Differential Equations of Second Order [J], Arch. Math.(Basel), 1989, 53(5): 482-492.
  • 6[5]Erbe L., Oscillation Criteria for Second Order Nonlinear Delay Equations [J], Canad Math. Bull., 1973,16(1): 49-56.
  • 7[1]W T Li.Oscillation of certain second order nonlinear differential equation[J]. J M A A 1998,217(1):1-14.
  • 8[2]P J Y Wong, R P Agarwal.Oscillatory behavior of solutions of certain second order nonlinear differential equations[J]. J. M. A. A. 1996, 198(2):337-354.
  • 9燕居让,科学通报,1981年,26卷,774页
  • 10郑祖庥,泛函微分议程理论,1994年

共引文献71

同被引文献15

引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部