摘要
讨论了一类二阶非线性泛函微分方程(a(t)y(′t)σ)′+q(t)f(y(τ(t)))g(y(′t))=0,t≥t0,σ是分母为奇数的正有理分数时方程解的振动性,得到此类方程的解振动的充分性判据,改进并推广了已有文献中的相应结论.
Oscillatory behavior of solutions to the second order nonlinear functional ditterential equation (α(t)y'(t)σ)'+q(t)f(y)τ(t)))g(y'(t))=0,t≥t0 was discussed, of which σ is a positive quotient of integer over odd integers, and some new sufficient conditions were established for the oscillatory, which extended and improved the corresponding results in many known literatures.
出处
《安徽大学学报(自然科学版)》
CAS
北大核心
2006年第6期19-21,共3页
Journal of Anhui University(Natural Science Edition)
基金
韩山师范学院重点课题基金资助项目(FC200507)
关键词
非线性
微分方程
振动性
nonlinear
differential equation
oscillation