期刊文献+

基于频繁活动序列挖掘的过程改进机会分析 被引量:1

Identification of Process Improvement Opportunity Based on Frequent Activity Sequential Pattern Mining Technology
下载PDF
导出
摘要 为了指导质量管理过程的持续改进,提出了基于图结构的工作流频繁活动序列模式的挖掘方法.采用基于Apriori方法的频繁活动序列挖掘算法,认为k-频繁图集中,当一个图减去其中的一个源顶点后,如果所得到的图与另一个图减去其中的一个沉顶点后的图相同时,可以连接生成一个(k+1)-候选频繁图,从而减少了传统Apriori算法迭代过程中生成的冗余候选频繁图的数目.文中以某飞机制造公司的质量外审意见处理流程为例,对改进Apriori算法的应用效果进行了验证,结果表明,该方法能够有效地挖掘出历史过程实例集中所蕴含的频繁活动执行序列,辅助企业可从过程组成的角度来寻找质量管理过程的改进机会. To guide the continuous improvement of quality management process by analyzing history workflow instance logs, a method for identifying frequent activity sequential pattern related with given quality target is presented. Aiming at the multiple loop structures in quality management process network,an improved graph pattern mining approach based on Apriori algorithm is put forward, where a frequent pattern of size k, denoted as Gi, is joined with another frequent pattern of size k, denoted as Gj, to form a candidate frequent pattern of size (k +1),if there exists a source vertex s in Gi and a sink vertex e in Gj such that the graph derived from Gi by subtracting node s equals with the graph derived from Gj by subtracting node e. This coalition operator only considers the source vertexes and sink vertexes, which reduces the amount of redundant frequent candidates generated in the traditional Apriori iterations. The external audit treatment process is used as a case study to illustrate the operation of the proposed method, and the result shows the effectiveness to discover the frequent activity sequential patterns to lead to the improvement of quality management process.
出处 《西安交通大学学报》 EI CAS CSCD 北大核心 2006年第11期1310-1314,共5页 Journal of Xi'an Jiaotong University
基金 国家自然科学基金资助项目(50505036) 国防科工委资助项目
关键词 质量管理过程 改进机会 工作流 频繁活动序列 quality management process improvement opportunity workflow frequent activity sequential pattern
  • 相关文献

参考文献6

  • 1Agrawal R,Gunopulos D,Leymann F.Mining process models from workflow logs[C]//Schek H J.Proceedings of Advances in Database Technology-EDBT ' 98:6th International Conference on Extending Database Technology.Heidelberg:Springer,1998:469-483.
  • 2Greco G,Guzzo A,Manco G,et al.Mining and reasoning on workflows[J].IEEE Transaction on Knowledge and Data Engineering,2005,17 (4):519-534.
  • 3Huang San-Yih,Yang Wan-Shiou.On the discovery of process models from their instances[J].Decision Support System,2002,34 (1):41-57.
  • 4Castellanos M,Casati F,Dayal U,et al.Comprehensive and automated approach to intelligent business process execution analysis[J].Distributed and Parallel Database,2004,16 (3):239-273.
  • 5Kaye M,Anderson R.Continuous improvement:the ten essential criteria[J].International Journal of Quality & Reliability Management,1999,16(5):485-506.
  • 6汪卫,周皓峰,袁晴晴,楼宇波,施伯乐.基于图论的频繁模式挖掘[J].计算机研究与发展,2005,42(2):230-235. 被引量:17

二级参考文献12

  • 1Rakesh Agrawal, Ramakrishnan Srikant. Fast algorithms for mining association rules in large databases. VLDB1994, Santiago,Chile, 1994.
  • 2Heikki Mannila, et al. Search and borders of theories in knowledge discovery. Data Mining and Knowledge Discovery,1997, 1(3): 241~258.
  • 3Jong Soo Park, et al. An effective Hash based algorithm for mining association rules. SIGMOD1995, San Jose, USA, 1995.
  • 4Sergey Brin, et al. Dynamic itemset counting and implication rules for market basket data. SIGMOD1997, Tucson, USA,1997.
  • 5Ramesh C. Agarwal, et al. Depth first generation of long patterns, KDD 2000, Boston, USA, 2000.
  • 6Ramesh C. Agarwal, et al. A tree projection algorithm for generation of frequent itemsets. J. of Parallel and Distributed Computing, 2001, 61(3): 350~371.
  • 7Jiawei Han, Jian Pei, Yiwen Yin. Mining frequent patterns without candidate generation. SIGMOD2000, Dallas, USA, 2000.
  • 8J. Pei, et al.. H-Mine: Hyper-structure mining of frequent patterns in large databases. ICDM'01, San Jose, CA, 2001.
  • 9Mike Perkowitz, Oren Etzioni. Adaptive sites: Automatically learning from user access patterns. WWW' 97, Santa Clara, 1997.
  • 10J. Pei, et al.. PrefixSpan: Mining sequential patterns efficiently by prefix-projected pattern growth. ICDE'01, Heidelberg, 2001.

共引文献16

同被引文献10

  • 1刘新瑜,朱卫东.基于过程挖掘的工作流性能分析[J].计算机应用,2005,25(4):915-918. 被引量:5
  • 2陈亮,高建民,陈富民,陈琨,李成.基于工作流挖掘的质量管理过程改进研究[J].计算机集成制造系统,2006,12(4):603-608. 被引量:8
  • 3van der Aalst W M P,ter Hofstede A H M,Weske M. Business process management: a survey [ A ]. Proceedings of the 2003 Conference on Business Process Management [ C ]. Berlin: Springer- Verlag,2003 : 1 - 12.
  • 4Nadia B,Amit B. An overview of continuous improvement: from the past to the present[J]. Management Decision, 2005,43 (5/ 6) :761 - 771.
  • 5Li Jianqiang, Fan Yushun, Zhou Mengchu. Performance modeling and analysis of workflow [J]. IEEE Transactions on Systems,Man, and Cybernetics (Part A: Systems and Humans), 2004,34(2) :229 - 242.
  • 6Kevin Y K N, Ghanmi A, Lain N, et al. Workforce configuration and workflow analysis of an information technology organization: a queuing network approach [J]. IEEE Transactions on Systems, Man, and Cybernetics (Part A: Systems and Humans), 2002,32 (6) : 724 - 733.
  • 7Koksal P, Arpinar S N, Dogac A. Workflow history management [J]. ACM SIGMOD record, 1998,27( 1 ) : 67 - 75.
  • 8Castiellanos M, Casati F, Dayal U, et al. A comprehensive and automated approach to intelligent business process exeeution analysis[J]. Distributed and Parallel Database, 2004,16( 3):239- 273.
  • 9van der Aalst W M P. Business alignment: using process mining as a tool for delta analysis[A]. Proceedings of the 5th Workshop on Business Process Modeling, Development and Support [C]. Heidelberg: Springer, 2004 : 138 -145.
  • 10林慧苹,范玉顺,吴澄.基于工作流技术的企业业务过程评价方法[J].计算机集成制造系统-CIMS,2001,7(12):47-52. 被引量:14

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部