期刊文献+

基于神经网络的催化剂配方模型(英文)

CATALYST COMPOUNDING MODEL ON NEURAL NETWORK
下载PDF
导出
摘要 本文应用人工神经网络中的BP网络与RBF网络,讨论脂肪醇催化剂配方的建模问题,并与传统的多元线性回归方法进行对比。结果表明,神经网络具有明显的优点,而RBF网络又比BF网络更加精确,且收敛速度要快1 000倍以上。 This paper deals with the model building on the compounding of catalyst fatty alcohol by BP network and RBF network and compares with the traditional multivariate linear regression method. The results indicate, neural network has clear merits and RBF network is more accurate than BP network, but the convergent speed is faster.
出处 《内蒙古农业大学学报(自然科学版)》 CAS 2006年第3期86-88,共3页 Journal of Inner Mongolia Agricultural University(Natural Science Edition)
关键词 人工神经网络 BP网络 RBF网络 催化剂 Artificial neural network BP network RBF network Catalyst
  • 相关文献

参考文献6

  • 1jun Luan.Modern Experimental Design Optimization Method[M],Shanghai Jiaotong University Press.
  • 2kaitai Fang,et al.:Orthogonal and Uniform Experimental Design[M],Science Press.
  • 3liqun han:Neural Network Model Building for Catalyst Compounding and Genetic Algorithm Optimization[J],Chemistry Journal,1999,50 (4),p.500---503
  • 4pingfan yan,et al.:Artificial neural network and Analogy Computation[M],Tsinghua University Press,2000
  • 5jun Gao:The Principle of Artificial neural network and Analogy Examples[M],Mechanics Industry Press,2003
  • 6dong Xu,et al.:Systematic Analysis and Design Based on MATLAB6.X.....Neural Network[M],Xian University of Electrical Science and Technology Press,2002

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部