期刊文献+

单叶双曲面、二次锥面/球面统一求交算法 被引量:1

Uniparted Hyperboloid and Quadric Cone/Sphere Intersection Algorithm
下载PDF
导出
摘要 为讨论方便,我们将单叶双曲面、二次锥面统称为∑*.首先考虑曲面∑*的两种特殊情况,给出了其与球面的交线为圆的条件,还直接给出了圆心、半径和法向量等重要几何参数,确保了交线的准确性.其次,通过求出球心P到曲面∑*的最短距离DMIN,直接判断是否无交,相切.在交线为非平面闭合曲线的情况下,通过巧妙的坐标变换,得到了关键方程,求出关键点,并根据关键点的个数确定交线的拓扑结构并求出交曲线的参数方程,确保了交线拓扑结构的稳定. In this paper, two special cases are considered first. We gain the condition that the intersection line is a circle and gives out its geometric parameters. Then, in all other cases, by calculating the minimum distance DMIN, nointersection and contact can be judged. If the intersection line is a nonplane closed curve, the key equation is gained by coordinate transformation. We can confirm the topological structure of intersection line with the amount of the key points and establish its parametric equation.
作者 杭后俊
出处 《安徽师范大学学报(自然科学版)》 CAS 2006年第5期409-414,共6页 Journal of Anhui Normal University(Natural Science)
基金 安徽省自然科学基金(2006kj076B)
关键词 单叶双曲面 二次锥面 球面 最短距离 关键方程 uniparted hyperboloid quadric cone sphere minimum distance key ,equation
  • 相关文献

参考文献1

二级参考文献10

  • 1Pratt M, Geisow A. Surface/Surface Intersection Problems[M]. In: Gregory J A, ed. The Mathematics of Surfaces Ⅰ ,Oxford: Clarendon Press, 1986. 117~142
  • 2Patrikalakis N. Surface-to-surface intersections [J]. IEEE Computer Graphics Application, 1993, 13(1): 89~ 95
  • 3Levin J. A parametric algorithm for drawing pictures of solid objects composed of quadric surfaces [J]. Communications of the ACM, 1976, 19(10): 555~563
  • 4Farouki R, Neff C, O' Connor M. Automatic parsing of degenerate quadric-surface intersections [J ]. ACM Transactions on Graphics, 1989, 8(3): 174~203
  • 5Miller J. Geometric approaches to nonplanar quadric surfaces intersection curves [J]. ACM Transactions on Graphics, 1987,6(4): 274~307
  • 6Miller J, Goldman R. Geometric algorithms for detecting and calculating all conic sections in the intersection of any two natural quadric surfaces [J]. Graphical Models and Image Processing,1995, 57(1): 55~66
  • 7Peigl L. Constructive method of interscting natural quadrics represented in trimmed surface form [J]. Computer-Aided Design, 1989, 21(4): 201~212
  • 8Sarraga R. Algebraic methods for intersections of quadric surfaces in GMSOLID [J]. Computer Vision, Graphics and Image Processing, 1983, 22(2): 222~238
  • 9Kim K, Kim M S. Torus/sphere intersection based on a configuration space approach [J]. Graphical Models and Image Processing, 1998, 60(1): 77~92
  • 10林军呈,唐敏,董金祥.运动曲面求交优化算法[J].计算机辅助设计与图形学学报,2003,15(7):886-892. 被引量:2

共引文献14

同被引文献8

  • 1Pratt M,Geisow A.Surface/surface intersection problems[M]//Greg- ory J A.The Mathematics of Surface I,Oxford:Clarendon Press, 1786:117-142.
  • 2Wang Wengping, Goldman R, Tu Changhe.Enhancing Levin's method for computing quadric-sttfface intersections[J].Comput Aid- ed Gemometric Design, 2003,20: 403-422.
  • 3Wang Wengping, Joe B, Goldman R.Computing quadric surface intersections based on analysis of plane cubic curves[J].Graphi- cal Models, 2003,64: 335-367.
  • 4Chen Xiaodiao, Yong Jtmhai,Zheng Guoqing,et al.Toms/sphere in- tersection algorithm[J].Journal of Computer-Aided Design & Com- puter Graphics,2005,17(6) : 1202-1206.
  • 5Tu Changhe, Wang Wenping, Mourrain B, et al.Signature sequence of intersection curve of two quadrics for exact morphological classification[R].HKU Tech Report,2004.
  • 6屠长河二次曲面交线的拓扑分类与计算[D].济南:山东大学,2003.
  • 7杭后俊.关于非中心二次曲面圆截面.河北理科教学研究,1997,15(2):21-24.
  • 8申立勇,刘洋.椭圆与抛物线及双曲线位置关系的代数条件[J].系统仿真学报,2002,14(9):1208-1211. 被引量:3

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部