摘要
电力系统状态估计常用加权最小二乘(W LS)法处理,这种方法中量测权值的悬殊和大量的注入量测会导致信息矩阵出现病态问题,降低算法的收敛性。综合带约束的正规方程(NE/C)法和海克特(H ach te l)法数值稳定性好的优点,把量测量合理分类构建信息矩阵,并采用分块稀疏矩阵技术,形成了一种计算速度快、数值稳定性好的状态估计新算法。理论和算例分析验证了该算法的有效性。
Weighted least squares method is commonly used for power system state estimation. The great disparity in weighting factors and a large number of injection measurements may cause the numerical illconditioned problems, thus degrading the convergence. In this paper, all measurements are classified reasonably to form the gain matrix. A new rapid and robust method for state estimation is proposed based on block sparse matrix technique, which makes full use of the numerical stability of NE/C (normal equations with equality constraints) method and Hachtel method. Theory analysis and example show that the proposed method is effective.
出处
《电力系统及其自动化学报》
CSCD
北大核心
2006年第5期42-45,共4页
Proceedings of the CSU-EPSA
关键词
状态估计
等式约束
虚拟量测
加权最小二乘法
state estimation
equality constrain
virtual measurement
weighted least squares(WLS)