摘要
“发展方程的时间离散化惯性流形-Ⅰ”中已经证明了如果时间步长充分小,且主算子A满足谱间隔条件,则文中定义的一类耗散发展方程时间离散化的差分格式存在一个惯性流形Mh,它就是非线性映射T的不动点Φh∈Hb,l的图象.第Ⅱ部分继而证明了当h→0时,不动点Φh的收敛性.然后作为一个例子。
It has been proved that under some conditions there exists a fixed point Φ h for nonlinear inertial mapping T . Furthermore we obtained the graph of the Φ h which is an inertial manifold. In this paper the convergence of Φ h to Φ as h tends to zero is proved. Then as an example the theory is applied to the regularized Navier Stokes equations.
出处
《西安交通大学学报》
EI
CAS
CSCD
北大核心
1996年第2期104-109,共6页
Journal of Xi'an Jiaotong University
关键词
惯性流形
时间离散
发展方程
N-S方程
inertial manifold time discretization regularized Nevier Stokes equations