期刊文献+

凸度量空间中渐近拟非扩张映象新的带误差的Ishikawa迭代逼近

New Ishikawa iteration approximation with errors for asymptotically quasi-nonexpansive mappings in convex metric space
下载PDF
导出
摘要 在凸度量空间中,利用新的解析法,证明了由集合序列{On}产生的在多值渐近拟非扩张映象下的新的带误差的Ishikawa迭代序列的收敛性。 The strong convergence of the set sequences {On}, of the new Ishikawa iteration approximation with errors to the fixed point of the multi-valued asymptotically quasi-nonexpansive mappings is proved.
作者 曾永琴 彭勇
出处 《成都信息工程学院学报》 2006年第5期739-741,共3页 Journal of Chengdu University of Information Technology
基金 成都信息工程学院院选科研项目(CRF200502)
关键词 凸度量空间 不动点集合 新的带误差的lshikawa迭代逼近 集合序列迭代 渐近拟非扩张映象 convex metric space fixed point set new Ishikawa iteration approximation with errors iterative set se-quence asymptotically quasi-nonexpansive mapping
  • 相关文献

参考文献10

  • 1张石生.Banach空间中渐近非扩张映象不动点的迭代逼近问题[J].应用数学和力学,2001,22(1):23-31. 被引量:34
  • 2Liu Q H.Iterative Sequences for Asymptotically Quasi-nonexpansive Mappings With Error Member[J].J.Math.Anal.Appl.,2001,259:18 -24.
  • 3田有先,张石生.凸度量空间中拟压缩映象具误差的Ishikawa型迭代序列的收敛性[J].应用数学和力学,2002,23(9):889-895. 被引量:11
  • 4Geobel K,Kirk W A.A fixed point theorem for asymptotically nonexpansive mappings[J].Proc.Amer.Math.Soc.,1972,35(1):171 -174.
  • 5Xu Y G.Ishikawa and Mann.Iterative precess with errors for nonlinear strongly accretive operator equations[J].J.Math.Anal Appl.,1998,224(1):91 -101.
  • 6Chidume C E.Convergence theorems for strongly pseudo-contractive and strongly accretive maps[J].J.Math.Anal.Appl.,1998,228(2):254 -264.
  • 7Weng X.Fixed point iteration for local strictly pseudo-contractive mapping[J].Proc.Amer.Math.Soc.,1991,113:727 -731.
  • 8Liu Q H.,Xue L X..Convergence theorem of iterative sequences for asymptotically non-expansive mapping in uniformly convex Banach space[J].J.Math.Res.Exposition,2000,20(3):331 -336.
  • 9Schu J..Iterative contruction of fixed points of asymptotically non-expansive mappings[J].J.Math.Anal.Appl.,1991,158:407 -413.
  • 10Takahashi W.A convexity in metric space and nonexpansive mappings[J].Kodai Math Sem Rep,1970,22(1):142 -149.

二级参考文献19

  • 1[6]XU Hong-kun.A note on the Ishikawa iteration scheme[J].J Math Anal Appl,1992,167(2):582-587.
  • 2[7]Rhoades H E.Comments on two fixed point iteration methods[J].J Math Anal Appl,1976,56(2):741-750.
  • 3[8]Naimpally S A, Singh K I.Extensions of some fixed point theorems of Rhoades[J].J Math Anal Appl,1983,96(2):437-446.
  • 4[9]LIU Qi-hou.On Naimpally and Singh's open questions[J].J Math Anal Appl,1987,124(1):157-164.
  • 5[10]LIU Qi-hou.A convergence theorem of the sequence of Ishikawa iterates for quasi-contractive mappings[J].J Math Anal Appl,1990,146(2):301-305.
  • 6[11]Takahashi W.A convexity in metric space and nonexpansive mappings Ⅰ[J].Kodai Math Sem Rep,1970,22(1):142-149.
  • 7[1]Chang Shi-sheng, Cho Y J, Jung J S, et al.Iterative approximations of fixed points and solutions for strongly accretive and strongly pseudo-contractive mappings in Banach spaces[J].J Math Anal Appl,1998,224(1):149-165.
  • 8[2]Ciric L B.A generalization of Banach's contraction principle[J].Proc Amer Math Soc,1974,45(1):267-273.
  • 9[3]Chidume C E.Convergence theorems for strongly pseudo-contractive and strongly accretive mappings[J].J Math Anal Appl,1998,228(1):254-264.
  • 10[4]Chidume C E.Global iterative schemes for strongly pseudo-contractive maps[J].Proc Amer Math Soc,1998,126(9):2641-2649.

共引文献43

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部