期刊文献+

γ-条件下变形Chebyshev迭代方法的收敛性及其应用

The Convergence of Deformed Chebyshev Method under γ-condition and Its Application
原文传递
导出
摘要 在sm a le点估计理论引导下,利用优序列方法,研究γ-条件下,变形chebyshev迭代方法在求解Banach空间中非线性方程F(x)=0时的收敛性问题,并给出了误差估计,而且通过一个积分方程实例比较了它和N ew ton法,导数超前计值的变形N ew ton法,避免导数求逆的变形N ew ton法的每步误差. By means of Smail's point estimates and the majorant method, the convergence of the deformed Chebyshev method under γ- conditions is studied to solve nonlinear equations in Banach space. And the error estimates are also given. Its error estimates compared with Newtonrs Iteration and two deformed Newtonrs Iterations are presented with a integral equation as an example.
作者 刘静
出处 《数学的实践与认识》 CSCD 北大核心 2006年第10期111-118,共8页 Mathematics in Practice and Theory
关键词 收敛性 优序列方法 Γ-条件 Chebyshev迭代法 convergence majorant method γ-condltion the Chebyshev interative method
  • 相关文献

参考文献5

二级参考文献18

  • 1王兴华,厦门大学学报,1990年,12卷,145页
  • 2王兴华,中国科学.A,1989年,9期,905页
  • 3V. Candela,A. Marquina.Recurrence relations for rational cubic methods I: The Halley method[J]. Computing . 1990 (2)
  • 4Alefeld,G.On the convergence of Halley’s method. The American Mathematical Monthly . 1981
  • 5CANDELAV,MARQUNA.A Recurrence Relations for Rational Cubic Method I:the Halley Method. Computing . 1990
  • 6X. H. Wang,S. M. Zheng,D. F. Han.Convergence on Euler series, the iterations Euler’s and Helley’s families. Acta Mathematica Sinica . 1990
  • 7M. Altman.Concerning the method of tangent hyperbolas for operator equations. Bull. Acad. Pol.Sci. Serie Sci. Math. Ast. et Phys . 1961
  • 8I.K. Argyros,D. Chen,Q. Qian.Optimal-order parameter identification in solving nonlinear sys-tems in a Banach space. Journal of Computational Mathematics . 1995
  • 9D. Chen,I.K. Argyros,Q.S. Qian.A note on the Halley method in Banach spaces. App. Math.Comput . 1993
  • 10M.A. Hernandez,MA. Salanova.A family of Chebyshev-Halley type method. Inter. J. Compute Math . 1993

共引文献36

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部