摘要
在sm a le点估计理论引导下,利用优序列方法,研究γ-条件下,变形chebyshev迭代方法在求解Banach空间中非线性方程F(x)=0时的收敛性问题,并给出了误差估计,而且通过一个积分方程实例比较了它和N ew ton法,导数超前计值的变形N ew ton法,避免导数求逆的变形N ew ton法的每步误差.
By means of Smail's point estimates and the majorant method, the convergence of the deformed Chebyshev method under γ- conditions is studied to solve nonlinear equations in Banach space. And the error estimates are also given. Its error estimates compared with Newtonrs Iteration and two deformed Newtonrs Iterations are presented with a integral equation as an example.
出处
《数学的实践与认识》
CSCD
北大核心
2006年第10期111-118,共8页
Mathematics in Practice and Theory