期刊文献+

Wick类型的随机广义KdV的精确解 被引量:2

Exact Solutions for Wick-type Stochastic Generalized KdV Equation
原文传递
导出
摘要 利用埃尔米特变换求出了W ick-类型的随机广义K dV方程的精确解.这种方法的基本思想是通过埃尔米特变换把W ick类型的随机广义K dV方程变成广义变系数K dV方程,利用齐次平衡法求出方程的精确解,然后通过埃尔米特的逆变换求出方程的随机解. In this paper, by using generalized expansion method, Wick-type stochastic generalized KdV equation is researched. Some stochastic exact solutions are obtained via generalized expansion method and Hermite transformation.
作者 高娃 包俊东
出处 《数学的实践与认识》 CSCD 北大核心 2006年第10期220-229,共10页 Mathematics in Practice and Theory
基金 内蒙古自然科学资金资助项目(20030802101)
关键词 Wick-类型的随机广义KdV方程 随机精确解 白色噪音 广义展开法 埃尔米特变换 Wick-type stochastic generalized KdV equation Stochastic exact solution White noise Generalized expansion method Hermite transformation
  • 相关文献

参考文献5

二级参考文献29

  • 1Ablowitz M J and Clarkson P A 1991 Solitons, Nonlinear Evolution Equations and Inverse Scattering In: London Mathematical Society Lecture Note Series vol 149( Cambridge: Cambridge University Press).
  • 2Miura M R 1978 Backlund Transformation (Berlin: Springer-Verlag).
  • 3Hirota R 1971 Phys. Rev. Lett. 27 1192.
  • 4Malfliet W 1992 Am. J. Phys .60 659.
  • 5Lou S Y et al 1992 Acta Phys. Sin. 42 182(in Chinese).
  • 6Liu X Q 1998 Appl. Math. -J. Chinese University B 13 25.
  • 7Zhang J F et al 2001 Acta Phys. Sin. 50 1648(in Chinese).
  • 8Yan Z Y et al 1999 Acta Phys. Sin. 48 1957(in Chinese).
  • 9Chan W L and Zhang X 1994 J. Phys. A : Math. Gen . 27 407.
  • 10Chan W L and Li K S 1989 J. Math. Phys. 30 2521.

共引文献223

同被引文献20

  • 1张金良,任东锋,王明亮,方宗德.Davey-StewartsonI的周期波解[J].数学物理学报(A辑),2005,25(2):213-219. 被引量:14
  • 2张金良,李向正,王明亮.随机Kadomtsev-petviashvili方程的精确解[J].工程数学学报,2006,23(2):293-297. 被引量:5
  • 3Holden H, Фksendal U B, Zhang T. Stochastic partial differential equations: a modeling, white noise functional approach [ M ]. Boston: Birhkauser Press, 1996.
  • 4Xie Y C . Exact solutions for stochastic KdV equations [J]. Physics Letters(A) ,2003,310(5- 6) :161 - 167.
  • 5Liu Q, Zhu J M, Wu H Y. The elliptic equation mapping method and its application to stochastic Korteweg-de Vries equation[J]. Journal of the Physical Society of Japan,2006,75 (1):14- 16.
  • 6Chen B, Xie Y C. Periodic-like solutions of variable coefftcient and Wick-type stochastic NLS equations[J].Journal of Computa- tional and Applied Mathematics,2007,203( 1 ) :249 - 263.
  • 7Liu Q. A modified Jacobi elliptic function expansion method and its application to Wick-type stochastic KdV equation [ J ]. Chaos Solitons and Fractals,2007,32(3): 1215- 1223.
  • 8Liu Q,Jia D L, Wang Z H. Three types of exact solutions to Wick- type generalized stochastic Korteweg-de Vries equation[ J]. Chaos Solitons and Fractals,2010,215(10) :3495 - 3500.
  • 9Kim H, Sakthivel R. Exact solutions of wick-type stochastic equations with variable coefftcients [J]. Reports on Mathematical Physics,2011,67(10) :415 - 429.
  • 10Zhou Y B, Wang M L, Wang Y M. Periodic wave solutions to a coupled KdV equations with variable coefficients [ J]. Physics Le- tters A,2001,308(1) :31 - 36.

引证文献2

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部