摘要
设E是一致凸的Banach空间,C是E的非空有界闭凸子集而且是E的非扩张收缩核.设S,T:C→E是两个非扩张非自映象.本文证明了,在一定条件下,由(1.1)式定义的序列{xn}分别弱和强收敛于S,T的公共不动点.本文结果也推广和改进了最近一些人的最新结果.
Let E be a real uniformly convex Banach space and C a nonempty closed convex subset of E which is also a nonexpansive retract of E. Let S,T:C →. E be two nonexpansive mappings. It is shown that under some suitable conditions, the sequence {xn} defined by (1.1) converges weakly and strongly to some common fixed point of S,T, respectively. The results presented in this paper also extend and improve some recent results.
出处
《数学的实践与认识》
CSCD
北大核心
2006年第10期254-258,共5页
Mathematics in Practice and Theory
基金
宜宾学院自然科学基金(2006Z07)
关键词
非扩张的非自映象
半闭原理
公共不动点
nonexpansive non-self map
demi-closed principle
common fixed point