期刊文献+

Kernel Factor Analysis Algorithm with Varimax

Kernel Factor Analysis Algorithm with Varimax
下载PDF
导出
摘要 Kernal factor analysis (KFA) with vafimax was proposed by using Mercer kernel function which can map the data in the original space to a high-dimensional feature space, and was compared with the kernel principle component analysis (KPCA). The results show that the best error rate in handwritten digit recognition by kernel factor analysis with vadmax (4.2%) was superior to KPCA (4.4%). The KFA with varimax could more accurately image handwritten digit recognition. Kernal factor analysis (KFA) with vafimax was proposed by using Mercer kernel function which can map the data in the original space to a high-dimensional feature space, and was compared with the kernel principle component analysis (KPCA). The results show that the best error rate in handwritten digit recognition by kernel factor analysis with vadmax (4.2%) was superior to KPCA (4.4%). The KFA with varimax could more accurately image handwritten digit recognition.
出处 《Journal of Southwest Jiaotong University(English Edition)》 2006年第4期394-399,共6页 西南交通大学学报(英文版)
基金 The National Defence Foundation of China (No.NEWL51435Qt220401)
关键词 Kernel factor analysis Kernel principal component analysis Support vector machine Varimax ALGORITHM Handwritten digit recognition Kernel factor analysis Kernel principal component analysis Support vector machine Varimax Algorithm Handwritten digit recognition
  • 相关文献

参考文献13

  • 1Corinna Cortes,Vladimir Vapnik.Support-Vector Networks[J].Machine Learning.1995(3)
  • 2Karl G. J?reskog.On the estimation of polychoric correlations and their asymptotic covariance matrix[J].Psychometrika.1994(3)
  • 3Henry F. Kaiser.The varimax criterion for analytic rotation in factor analysis[J].Psychometrika.1958(3)
  • 4Valpola H,Ostman T,Karhunen J.Nonlinear inde-pendent factor analysis by hierarchical models[].Procth IntSympon Independent Component Analy-sis and Blind Signal Separation(ICA).2003
  • 5Yalcin I,Amemiya Y.Nonlinear factor analysis as a sta-tistical method[].Statistical Science.2001
  • 6Hastie T,Stuetzle W.Principal curves[].Journal of the American Statistical Association.1989
  • 7Fodor I K.A survey of dimension reduction techniques[].Center for Applied Scientific ComputingLawrenceLivermore National Laboratory.2002
  • 8Scholkopf B,Mika S,Burges C,et al.Input space ver-sus feature space in kernel-based methods[].IEEE Transactions on Neural Networks.1999
  • 9Scholkopf B,Smola A,Muller K R.Nonlinear compo-nent analysis as a kernel eigenvalue problem[].Neural Computation.1998
  • 10Attias H.Independent factor analysis[].Neural Com-putation.1999

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部