期刊文献+

关于多重向量值正交小波的存在性 被引量:6

On the Existence of Orthogonal Multiple Vector-Valued Wavelets
下载PDF
导出
摘要 引进多重向量值多分辨分析与m(3≤m∈Z)尺度多重向量值正交小波的概念.运用仿酉向量滤波器理论与矩阵理论,得到多重向量值正交小波存在的充要条件.在给定滤波器的条件下,表明多重向量值正交尺度函数和正交小波函数可以由加细方程的解得到. In this paper, multiple vector-valued multiresolution analysis and orthogonalmultiple vector-valued wavelets with scale m are introduced. A necessaryand suficient condition on the existence of orthogonal multiple vector-valued waveletsis derived by using paraunitary vector filter bank theory and matrix theory. It is shownhow to obtain orthogonal vector-valued scaling functions and wavelets from solving ref-inement equations if some filter banks are given.
出处 《江西师范大学学报(自然科学版)》 CAS 北大核心 2006年第5期431-435,共5页 Journal of Jiangxi Normal University(Natural Science Edition)
基金 河南省自然科学基金项目(0211044800) 2004年吉林省教育厅"十五"规划项目
关键词 正交 多重向量值多分辨分析 多重向量值尺度函数 多重向量值小波 滤波器 orthogonal multiple vector-valued multiresolution analysis multiple vector-valued scaling functions multiplevector-valued wavelets filter banks
  • 相关文献

参考文献8

  • 1Xia X G,Suter B W.Vector-valued wavelets and vector filter banks[J].IEEE Trans.signal Processing,1996,44(3):508-518.
  • 2Bacchelli S,Cotronei M,Sauer T.Wavelets for multichannel signals[J].Adv Appl Math,2002,29(3):581-598.
  • 3Turcajova R.An algorithm for the construction of symmetric orthogonal multiwavelets[J].Matrix Anal Appl,2003,25(2):532-550.
  • 4Fowler J E,Li H.Wavelet transforms for vector fields using omnidirectionally balanced multiwavelets[J].IEEE Trans Signal Processing,2002,50(12):3 018-3 027.
  • 5Daubechies I.Ten lectures on wavelets[M].New York:Academic press,1992.
  • 6Mallat S.Multiresolution approximations and wavelet orthonormal bases of(R)[J].Trans Amer Math Soc,1989,315(1):69-87.
  • 7Doganata Z,Vaidyanathna P P,Nguyen.General synthesis procedures for FIR loss-less transfer matrices,for perfect-reconstruction multirate filter bank applications[J].IEEE Trans Acoust Speech Signal Proc,1988,36(10):1 561-1 674.
  • 8Xia X G,Suter B W.FIR paraunitary filter banks given several analysis filter:Fac-torizations and constructions[J].IEEE Trans Signal Processing,1996,44(3):720-723.

同被引文献37

  • 1陈清江,程正兴,冯晓霞.高维多重双正交小波包[J].应用数学,2005,18(3):358-364. 被引量:21
  • 2CHUI C K.An introduction to wavelets[M].Academic Press,1992.
  • 3HE H,CHENG S.Home network power-line communication signal processing based on wavelet packet analysis[J].IEEE Trans Power Delivery,2005,20(3):1879-1885.
  • 4DENG Hai,LING Hao.Fast Solution of Electronmagnetic Integral Equations Using Adaptive Wavelet Packet Transform[J].IEEE Trans on Antennas and Propagation,1999,47(4):674-682.
  • 5COHEN A,DAUBECHES I.On the instability of arbitrary biorthogonal wavelet packets[J].SIAM Math Anal,1993,24(3):1340-1354.
  • 6CHEN Q,CHENG Z,WANG C.Existence and construction of compactly supported biorthogonal multiple vector-valued wavelets[J].Journal of Applied Mathematics and Computing,2006,22(3):101-115.
  • 7Efromovich S,Lakey J,Pereyia M,et al.Data-diven and optimal denoising of a signal using multiwavelets[J].IEEE Trans Signal Processing,2004,52(3):628-635.
  • 8Zhang Ning,Wu Xiao-Lin.Lossless compression of color masaic images[J].LEEE Trans Image Processing,2006,15(16):1379-1388.
  • 9Han Bin.Analysis and construction of optimal multivariate biorthogonal wavelets with compact support[J].SIAM Math Anal,1999,30(2):274-304.
  • 10Daubechies I, Grossmann A, Meyer Y.Painless nonorthogonal expansions[J]. Math Phys, 1986, 27: 1271-1283.

引证文献6

二级引证文献4

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部