期刊文献+

UPF算法在状态估计中的应用 被引量:3

Application of Unscented Particle Filtering Algorithm on State Estimation
下载PDF
导出
摘要 首先分析了基于贝叶斯理论的粒子滤波算法的原理;然后在分析采样-重要性-重采样算法基础上讨论了粒子滤波算法存在的主要问题,研究了一种使用UKF产生重点密度函数的粒子滤波算法(UPF);最后通过实例将该算法与粒子滤波算法进行比较,仿真结果表明UPF算法运算时间低于粒子滤波算法。 The Particle Filter (PF) algorithm based on Bayesian theory is analyzed. Then, based on the analysis of a standard algorithm of sampling-importance-resampling filter, the problems of PF are discussed and another PF algorithm which importance density is generated by UKF is researched. Finally, the comparison of two algorithms" performance is presented by an application example, the simulation results have shown that calculation time of the unscented particle filter (UPF) is less than PF.
出处 《微电子学与计算机》 CSCD 北大核心 2006年第11期41-43,共3页 Microelectronics & Computer
关键词 粒子滤波 贝叶斯估计 非线性滤波 UPF Particle filter, Bayesian estimation, Nonlinear filter, Unscented particle filter
  • 相关文献

参考文献5

  • 1Y Bar-Shalom,X R Li.Estimation and tracking:Principles,Techniques and Software.Artech House,Boston,MA
  • 2李磊磊,陈家,斌谢玲,刘星桥,徐建华.粒子滤波方法在GPS/DR组合导航系统中的应用[J].微电子学与计算机,2004,21(10):97-99. 被引量:15
  • 3Julier S J,Uhlmann J K,Durrant-Whyten H F.A new approach for filtering nonlinear system[A].Proc of the American Control Conf[C].Washington:Seattle,1995:1628~1632
  • 4Julier S J,Uhlmann J K,A new extension of the Kalman filter to nonlinear systems[A].The Proc of Aero sense:11th Int Symposium Aerospace/Defense Sensing,Simulation and Controls[C].Orlando,1997:54~65
  • 5J Carpenter,P Clifford,P Fearnhead.Improved particle filter for nonlinear problems.IEE proc.Radar,Sonar,Naving.,1999,146(1)

二级参考文献6

  • 1俞济祥.卡尔曼滤波及其在惯性导航中的应用.北京:航空专业教材编审组.1984.
  • 2朱本仁.蒙特卡洛方法引论.济南:山东大学出版社.1987.
  • 3Carine Hue, Jean-Pierre Le Cadre. Sequential Monte Carlo methods for Multiple Target Tracking and Data Fusion.IEEE Trans. on Signal Processing. February 2002,50(2):309-325.
  • 4X Wang, R Chen. Adaptive Bayesian multiuser detection for synchronous CDMA with Gaussian and impulsive noise.IEEE Trans. On Signal Processing,July 2000,48(7): 2013-2029.
  • 5P J G Teunissen. A New Method for Fast Carrier Phase Ambiguity Estimation. Proc. IEEE Position, Location and Navigation Symp, 1994: 562-573.
  • 6茆诗松.贝叶斯统计.北京:中国统计出版社.1999.

共引文献14

同被引文献24

  • 1郝晶,李卫忠,白剑林.一种多速率的交互式多模型粒子滤波算法[J].微电子学与计算机,2009,26(2):163-166. 被引量:3
  • 2田力伟,黄建国.粒子滤波在机动目标纯方位跟踪中的应用[J].微电子学与计算机,2005,22(10):81-84. 被引量:6
  • 3Matthews I, Ishikawa T, Baker S. The template update problem [ J]. IEEE Transactions on Pattern Analysis and Machine Intelli- gence, 2004, 26(6) :810-815.[ DOI: 10. 1109/TPAMI. 2004. 16].
  • 4Piccardi M, Cheng E D. Track matching over disjoint camera views based on an incremental major color spectrum histogram [ C]//Proceedings of IEEE Conference on Advanced Video and Signal Based Surveillance. New York : IEEE, Computer Society, 2006 : 147-152.
  • 5Comaniciu D, Ramesh V, Meer P. Kernel-based object tracking [ J]. IEEE Transactions on Pattern Analysis and Machine Intelli- gence, 2003, 25 (5) :564-577. [DOI: 10. 1109/TPAMI. 2003. 1195991].
  • 6Porikli F, Tuzel O, Meer P. Covariance tracking using model up- date based on lie algebra [ C ]//Proceedings of IEEE Computer Society Conference on Computer Vision and Pattern Recognition. New York : Institute of Electrical and Electronics Engineers Com- puter Society, 2006 : 728-735.
  • 7Avidan S. Support vector tracking [ J ]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2004, 26 (8) :1064-1072. [ DOI: 10.1109/TPAMI. 2004.53 ].
  • 8Babenko B, Yang M H, Belongie S. Visual tracking with online multiple instance learning [ C ]//Proceedings of IEEE Computer Society Conference on Computer Vision and Pattern Recognition. Miami: IEEE Computer Society, 2009 : 983-990.
  • 9Grabner H, Leistner C, Bischof H. Semi-supervised on-line boosting for robust tracking [ C ]//Proceedings of the 10th Euro- pean Conference on Computer Vision. Marseille: Springer Ver- lag, 2008: 234-247.
  • 10Xue M, Ling H. Robust visual tracking using L1 minimization [ C ]//Proceedings of the 12th International Conference on Com- puter Vision. Kyoto: Springer Verlag, 2009: 1436-1443.

引证文献3

二级引证文献15

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部