期刊文献+

微流控器件-质谱联用接口技术研究进展与应用 被引量:1

The Development and Applications of Microfluid Devices Interfacing to Mass Spectrometry for Biochemical Analyses
下载PDF
导出
摘要 生物分析是生命科学研究中的重要环节,分析仪器的小型化是提高生物分析灵敏度、速度、通量和降低成本的有效途径之一.微流控技术能够方便地操纵微量样品,具有集成度高、样品耗量小、污染少等诸多其他常量流控技术难以具备的优点,适用于进行多通道样品处理和高通量分析.除广泛采用的光学和电化学检测手段外,质谱也被用作这些微流控器件的检测器,并逐渐形成了微流控器件-质谱联用技术专门研究领域,进一步促进了自动化程度好、灵敏度高、特异性强的高通量生物分析方法的迅速发展.在大量调研国内外文献的基础上,对微流控器件-质谱联用领域的研究背景和现状进行了综述,不但介绍了微流控器件的制造技术还着重介绍了微流控器件-质谱联用技术在蛋白质组学等生物质谱分析方面的应用和新近进展,评述了可能的发展趋势. Miniaturization of analytical instrument is one way of addressing the issues of sensitivity, measurement speed, throughput and cost of analysis in biology analysis. Microfluidic devices can be used to manipulate the microscale sample expediently, and have many advantages including minimum sample consumption and minimum cross contaminant, which are typical problems in other conventional standard fluidic devices. The highly integrated microfluidic devices were suitable for high-density, parallel sample processing, and high-throughput analyses with extremely high duty cycles. Besides the optical spectroscopic measurement and electrochemical detection, mass spectrometry has been coupled to microfluidic devices as detector, resulting in rapid analysis of complex biological samples with high throughput and confidence. Microfluidic devices utilizing chromatographic or capillary electrophoresis separation techniques are under fast development, showing a predominant trend in modem analytical science. After giving a brief introduction to background of the microfluidic devices and fabrication techniques, documenting the technologies and applications of microfluidic mass spectrometry for the analysis of biological samples and emphasizing on the emergence of interfaces coupling microfluidic devices to various mass spectrometers for applications in proteomics, metabolomics and other biotechnology areas are reviewed.
出处 《生物化学与生物物理进展》 SCIE CAS CSCD 北大核心 2006年第11期1120-1130,共11页 Progress In Biochemistry and Biophysics
基金 国家自然科学基金资助项目(20505003).~~
关键词 微流控器件 质谱 蛋白质组学 生物分析 microfluidic device, mass spectrometry, proteomics, biochemical analysis
  • 相关文献

参考文献52

  • 1Harrison D J, Manz A, Fan Z H, et al, Capillary electrophoresis and sample injection systems integrated on a planar glass chip, Anal Chem, 1992, 64 (17): 1926- 1932
  • 2Jacobson S C, Hergenroder R, Koutny L B, et al. Effects of injection schemes and column geometry on the performance of microchip electrophoresis devices. Anal Chem, 1994, 66 (7): 1107- 1113
  • 3Jacobson S C, Culbertson C T, Daler J E, et al. Microchip structures for submillisecond electrophoresis. Anal Chem, 1998, 70 (16):3476-3480
  • 4Rocklin R D, Ramsey R S, Ramsey J M. A microfabricated fluidic device for performing two-dimensional liquid-phase separations.Anal Chem, 2000, 72 (21): 5244-5249
  • 5Gottschlich N, Jacobson S C, Culbertson C T, et al.Two-dimensional electrochromatography/capillary electrophoresis on a microchip. Anal Chem, 2001, 73 (11): 2669-2674
  • 6Emrich C A, Tian H, Medintz I L, et al. Microfabricated 384-lane capillary array electrophoresis bioanalyzer for ultrahigh-throughput genetic analysis. Anal Chem, 2002, 74 (19): 5076-5083
  • 7Madou M. Fundamentals of Microfabrication. Boca Raton: CRC Press, 1997. 574-575
  • 8金亚,罗国安,汤扬华,周兆英.集成毛细管电泳芯片系统的制作、测试及应用[J].分析科学学报,2001,17(2):148-152. 被引量:17
  • 9Schultz G A, Corso T N, Prosser S J, et al. A fully integrated monolithic microchip electrospray device for mass spectrometry.Anal Chem, 2000, 72 (17): 4058-4063
  • 10Le Gac S, Arscott S, Rolando C. A planar mierofabrieated nanoelectrospray emitter tip based on a capillary slot.Electrophoresis, 2003, 24 (21): 3640-3647

二级参考文献44

  • 1[1]Wilm M, Shevchenko A, Howthaeve A, et al. Femtomole Sequencing of Proteins from Polyacrylamide Gels by Nano-electrospray Mass Spectrometry. Nature, 1996, 379: 466.
  • 2[2]Lu Y, Zhou F, Shui W Q, et al. Pulsed Electrospray for Mass Spectrometry. Anal. Chem., 2001, 73, 4748.
  • 3[3]Xue Q, Foret F, Dunayevskiy Y M, et al. Multichannel Microchip Electrospray Mass Spectrometry. Anal. Chem., 1997, 69: 426.
  • 4[4]Ramsey R S, Ramsey J M. Generating Electrospray from Microchip Devices Using Electroosmotic Pumping. Anal. Chem., 1997, 69: 1174.
  • 5[5]Zhang B, Liu H, Karger B L, et al. Microfabricated Devices for Capillary Electrophoresis-Electrospray Mass Spectrometry, Anal. Chem., 1999, 71: 3258.
  • 6[6]Lazar I M, Ramsey R S, Sundberg S, et al. Subattomole-Sensitivity Microchip Nanoelectrospray Source with Time-of-Flight Mass Spectrometry Detection. Anal. Chem., 1999,71: 3627.
  • 7[7]Vrouwe E X, Gysler J, Tjaden U R. Chip-Based Capillary Electrophoresis with an Electrodeless Nanospray Interface. Rapid Commun. Mass Spectrom., 2000, 14: 1682.
  • 8[8]Chen S H, Sung W C, Lee G B, et al. A Disposable Poly(methylmethacrylate)-Based Microfluidic Module for Protein Identification by Nanoelectrospray Ionization-Tandem Mass Spectrometry. Electrophoresis, 2001, 22: 3973.
  • 9[9]Macounova K, Cabreran C R, Yager P. Concentration and Separation of Proteins in Microfluidic Channels on the Basis of Transverse IEF. Anal.Chem., 2001, 73: 1627.
  • 10[10]Kaniansky D, Masár M, Bielciková J, et al. Capillary Electrophoresis Separations on a Planar Chip with the Column-Coupling Configuration of the Separation Channels. Anal.Chem., 2000, 72: 3596.

共引文献21

同被引文献8

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部