期刊文献+

一类多重向量值双正交小波包的刻划 被引量:7

Characteristics of biorthogonal multiple vector-valued wavelet packets
原文传递
导出
摘要 研究向量值小波包.给出一类3尺度多重向量值双正交小波包的定义及构造.运用积分理论与算子理论,刻划了多重向量值双正交小波包的特征,得到多重向量值小波包的双正交公式.进而,得到向量值函数空间L2R,Cs×s)新的Riesz基. It is been to investigate the vector-valued wavelet packets. A class of 3 - scale biorthogonal multiple vector-valued wavelet packets is defined and a procedure for constructing them is presented. The properties for the biorthogonal multiple vector-valued wavelet packets are characterized. Biorthogonality fomulae for the multiple vector-valued wavelet packets are obtained. Furthermore, new Riesz bases of L^2 (R, C^s×s) are constructed from the biorthogonal multiple vector-valued wavelet packets.
出处 《云南大学学报(自然科学版)》 CAS CSCD 北大核心 2006年第6期472-477,482,共7页 Journal of Yunnan University(Natural Sciences Edition)
基金 国家自然科学基金资助项目(10371105) 河南省自然科学基金资助项目(0211044800)
关键词 双正交 多重 向量值多分辨分析 向量值尺度函数 向量值小波 向量值小波包 biorthogonal multiple vector-valued multiresolution analysis vector-valued scaling functions vector-valued wavelet vector-valued wavelet packets
  • 相关文献

参考文献8

  • 1CHUICK.小波分析导论[M].程正兴译.西安:西安交通大学出版社,1994.
  • 2TOLIYAT H A, ABBASZADEH K, RAHIMIAN M M, et al. Rail defect diagnosis using wavelet packet decomposition[J].IEEE Trans Industry Applications, 2003, 39(5): 1 454-1 461.
  • 3DENG Hai, LING Hao. Fast solution of electromagnetic integral equations using adaptive wavelet packet transform[J].IEEE Trans on Antennas and Propagation, 1999, 47(4):674-682.
  • 4COHEN A, DAUBECHES I. On the instability of arbitrary biorthogonal wavelet packets [J]. SIAM Math Anal, 1993,24(3): 1 340-1 354.
  • 5冷劲松,程正兴,黄廷祝.a尺度多重双正交小波包[J].工程数学学报,2001,18(F12):124-130. 被引量:19
  • 6XIA X G, SUTER B W. Vector-valued wavelets and vector filter banksl [J]. IEEE Trans Signal Processing, 1996, 44 (3):508-518.
  • 7FOWLER J E, LI H. Wavelet transforms for vector fields using omnidirectionaUy balanced multiwaveletsl [J]. IEEE Trans Signal Processing, 2002, 50(12): 3 018-3 027.
  • 8陈清江,程正兴,冯晓霞.高维多重双正交小波包[J].应用数学,2005,18(3):358-364. 被引量:21

二级参考文献17

  • 1程正兴.具有矩阵的小波包[J].工程数学学报,1994,11(1):15-28. 被引量:10
  • 2ChuiCK.小波分析导论[M].西安:西安交通大学出版社,1994..
  • 3Toliyat H A,Abbaszadeh K,Rahimian M M, Olson L E. Rail defect diagnosis using wavelet packet decomposition[J]. IEEE Transactions on Industry Applications, ,2003,39(5) :1451-1461.
  • 4Martin M B,Bell A E. New image compression technique using multiwavelet packets[J]. IEEE Transactions on Image Processing,2001,10(4):500-511.
  • 5Coifman R R, Meyer Y, Wickerhauser M V. Wavelet analysis and signal processing[A]. Beylkin G. Wavelets and their Applications[C]. Boston:Jones and Barlett, MA, 1992.
  • 6Chui C K,Chun L. Nonorthonormal wavelet packets[J] SIAM Math. Anal. , 1993,24(3) :712-738.
  • 7Cohen A, Daubeches I. On the instability of arbitrary biorthogonalwavelet packets[J]. SIAM. Math. Anal. , 1993,24(5) : 1340- 1354.
  • 8Shen Z. Nontensor product wavelet packets in L2 (R') [J]. SIAM. Math. Anal. , 1995,26 (4) :1061 - 1074.
  • 9Geronimo J, Hardin D P, Massopust P. Fractal functions and wavelet expansions based on several scaling functions[J]. J Approx Theory,1998;78:373-401
  • 10Marasovich J, Biorthogonal multiwavelets[J]. Dissertation Vanderbilt University, Nashville: TN,1996

共引文献37

同被引文献48

引证文献7

二级引证文献13

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部