期刊文献+

基于局部信息熵及其分布特性的图像融合算法 被引量:2

Image Fusion Algorithm Based on Local Information Entropy and Its Distribution Property
下载PDF
导出
摘要 提出了一种新的基于HIS模型的图像融合算法,根据源图像在有向梯度域中的局部信息熵及其分布情况确定融合准则。对实验结果的主观定性评价和客观定量分析说明,新算法在有效保持空间信息的同时,产生的光谱畸变较小,对全色图像中的噪声有一定的免疫力,从而克服了现有同类算法光谱失真严重和对源图像中噪声敏感的缺点。 This paper proposes a new multispectral and panchromatic image fusion algorithm based on HIS model. The new algorithm determines fusion rule according to local information entropy and its distribution property in orientated gradient domain. The subjective qualitative evaluation and objective quantitative analysis of experiment results prove that this new algorithm can produce fusion image that preserves spatial characteristics effectively and introduces less spectral distortion. It is also less sensitive to the noise in source panchromatic image compared with some existing algorithms.
出处 《计算机工程》 EI CAS CSCD 北大核心 2006年第21期22-24,30,共4页 Computer Engineering
基金 国防基础"973"计划基金资助项目 航空科学基金资助项目(01F53028)
关键词 多光谱 全色 图像融合 有向梯度塔形结构 Multispectral Panchromatie: Image fusion Orientated gradient pyramid structure
  • 相关文献

参考文献7

  • 1Pohl C.Multisensor Image Fusion in Remote Sensing:Concepts,Methods and Applications[J].Int.J.Remote Sensing,1998,19(5):823-854.
  • 2Wang Zhijun,Ziou D,Armenakis C,et al.A Comparative Analysis of Image Fusion Methods[J].IEEE Trans.on Geoscience and Remote Sensing,2005,43(6):1391-1402.
  • 3Aydin M,Yazgan E,Arioz U,et al.Biomedical Image Fusion with Selection Operation in the Laplacian Pyramid Domain[C].Proceedings of IEEE the 12th Signal Processing and Communications Applications Conference,2004-04:106-109.
  • 4Li Ming,Wu Shunjun.A New Image Fusion Algorithm Based on Wavelet Transform[C].Proceedings of the ICCIMA?03,2003-09:154-159.
  • 5Burt P J,Kolczynski R J.Enhanced Image Capture Through Fusion[C].Proc.of the IEEE 4th Int.Conf.Comp.Vision,1993:173-182.
  • 6张新曼,韩九强.基于视觉特性的多尺度对比度塔图像融合及性能评价[J].西安交通大学学报,2004,38(4):380-383. 被引量:23
  • 7Toet A,Lucassen M P.A Universal Color Image Quality Metric[C].Proceedings of the SPIE,2003:13-23.

二级参考文献7

  • 1[1]Varshney P K. Multisensor data fusion [J]. Electronics & Communication Engineering Journal, 1997, 9(6): 245~253.
  • 2[2]Burt P J, Kolczynski R J. Enhanced image capture through fusion [A]. The Fourth International Conference on Computer Vision, Berlin, Germany, 1993.
  • 3[3]Toet A. Multiscale contrast enhancement with applications to image fusion [J]. Optical Engineering, 1992, 31(5): 1 026~1 031.
  • 4[4]Mallat S G. A theory for multiresolution signal decomposition: the wavelet representation [J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 1989, 11(7): 674~693.
  • 5[5]Li H, Manjunath B S, Mitra S K. Multisensor image fusion using the wavelet transform [J]. Graphical Models and Image Processing, 1995, 57(3): 235~245.
  • 6[6]Li S T, James T K, Wang Y N. Multifocus image fusion using artificial neural networks [J]. Pattern Recognition Letters, 2002, 23(8): 985~997.
  • 7[7]Maes F, Collignon A, Vandermeulen D, et al. Multimodality image registration by maximization of mutual information [J]. IEEE Transactions on Medical Imaging, 1997, 16(2):187~198.

共引文献22

同被引文献11

引证文献2

二级引证文献6

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部