期刊文献+

掺杂Cu的Ni基催化剂用于制备碳纳米管 被引量:2

Preparation of Carbon Nanotubes on Nickel-Based Catalyst Doping with Copper
下载PDF
导出
摘要 以共浸渍法制备的Ni-Cu-Al金属复合物为催化剂,甲烷高温裂解合成碳纳米管。考察了Cu含量对Ni-Cu-Al催化剂活性和碳纳米管形貌的影响及焙烧温度和焙烧气氛对Ni-Cu-Al催化剂性能的影响。采用透射电子显微镜对Ni-Cu-Al催化剂和碳纳米管的形貌进行了表征,采用程序升温还原方法考察了Ni-Cu-Al催化剂的还原温度。实验结果表明,在Ni-Al催化剂中加入Cu不仅可提高催化剂的活性、延长催化剂的寿命,还有助于控制生成的碳纳米管的内径。当n(Ni)∶n(Cu)∶n(Al)=75∶15∶10时,Ni-Cu-Al催化剂的BET比表面积最大,为278.18m2/g;活性也最高,在甲烷流量60mL/min、反应温度1023K、反应时间300min的条件下,碳纳米管的收率(以催化剂的质量计)为23.66g。Ni-Cu-Al催化剂的最佳焙烧条件为350℃,氮气气氛。 Carbon nanotubes (CNTs)were synthesized by catalytic cracking of methane at high temperature on Ni-Cu-Al catalysts prepared by co-impregnation. The catalysts and the obtained CNTs were characterized by means of TEM and TPR. Effects of Cu contents and preparation conditions on activities of Ni-Cu-Al catalysts were investigated. Cu can influence both catalytic activity and life of Ni-Cu-Al catalysts, and can adjust inner diameter of CNTs. BET specific surface area of the catalyst can reach max. (278.18 m^2/g)and its activity is the highest when n(Ni) : n(Cu) : n(Al)in Ni-Cu-AI catalyst is 75 : 15 : 10. Under optimal conditions:methane flow rate 60 mL/min, reaction temperature 1023 K, reaction time 300 min and Ni-Cu-Al catalyst prepared under nitrogen at 350℃, yield of CNTs (based on catalyst mass)can reach 23.66 g.
出处 《石油化工》 EI CAS CSCD 北大核心 2006年第11期1025-1029,共5页 Petrochemical Technology
基金 国家自然基金资助项目(20263003) 江西省自然科学基金资助项目(0250009)
关键词 碳纳米管 镍基催化剂 催化裂解 甲烷 carbon nanotubes nickel-based catalyst copper aluminium catalytic cracking
  • 相关文献

参考文献16

  • 1Iijima S. Helical Micro-Tubules of Graphitic Carbon. Nature, 1991,354(6 348):56-58
  • 2Kong Jing,Franklin N R, Zhou Chongwu, et al. Nanotube Molecular Wires as Chemical Sensors. Science, 2000,287(5 453): 622-625
  • 3Li Xuesong, Zhu Hongwei, Ci Lijie, et al. Hydrogen Uptake by Graphitized Multi-Walled Carbon Nanotubes Under Moderate Pressure and at Room Temperature. Carbon, 2001,39 (13): 2 077-2 079
  • 4Che Guangli, Lakshmi B B, Fisher E R, et al. Carbon Nanotubule Membranes for Electro-Chemical Energy Storage and Production.Nature,1998,393(6 683):346-349
  • 5Ebbesen T W,Ajayan P M. Large-Scale Synthesis of Carbon Nanotubes. Nature, 1992,358(6 383):220-222
  • 6Guo T, Nikolaev P, Thess A, et al. Catalytic Growth of Single-Walled Manotubes by Laser Vaporization. Chem Phys Lett, 1995,243(1):49-54
  • 7凌晨,骞伟中,陈理,刘唐,魏飞,汪展文.铁基催化剂裂解乙烯制备高纯度碳纳米管[J].石油化工,2005,34(6):569-572. 被引量:2
  • 8彭峰,姜靖雯,冯景贤.LaAl_(1/3)Fe_(2/3)O_3催化剂的制备及用于VOCs裂解制备碳纳米管[J].石油化工,2003,32(12):1068-1072. 被引量:5
  • 9Takenaka S,Kobayashi S ,Ogihara H,et al. Ni/SiO2 Catalyst Effective for Methane Decomposition into Hydrogen and Carbon Nanofibet. J Catal,2003,217(1):79-87
  • 10Alvarez W E,Kitiyanan B,Borgna A,et al. Synergism of Co and Mo in the Catalytic Production of Single-Wall Carbon Nanotubes by Decomposition of CO. Carbon,2001,39(4):547-558

二级参考文献17

  • 1Treacy M M J, Ebbesen T W, Gibson J M. Exceptionally High Young's Modulus Observed for Individual Carbon Nanotubes.Nature, 1996,381:678 ~ 680
  • 2Hernadi K,Fonseca A,Nagy J B ,et al. Production of Nanotubes by the Catalytic Decomposition of Different Carbon - Containing Compounds. Appl Catal,A ,2000 ,199 ( 2 ): 245 ~ 255
  • 3Ci Lijie,Wei Bingqing, Liang Ji, et al. Preparation of Carbon Nanotubules by the Floating Catalyst Method. J Mater Sci Lett, 1999,18(10) :797 ~799
  • 4Li Yongdan, Chen Jiuling, Qin Yongning, et al. Simultaneous Production of Hydrogen and Nanocarbon from Decomposition of Methane over Nickel -Based Catalyst. Energy Fuels,2000,14(6) :1188 ~ 1194
  • 5Wang Yao, Wei Fei,Luo Guohua,et al. The Large- Scale Production of Carbon Nanotubes in a Nano - Agglomerate Fluidized Bed Reactor. Chem Phys Lett ,2002 ,364 (5 ~ 6) :568 ~ 572
  • 6Qian Weizhong, Wei Fei, Wang Zhanwen, et al. Production of Carbon Nanotubes in a Packed Bed and a Fluidized Bed. AIChE J,2003,49(3) :619 ~625
  • 7Qian Weizhong, Yu Hao, Wei Fei, et al. Synthesis of Carbon Nanotubes from Liquefied Petroleum Gas Containing Sulfur. Carbon,2002,40( 15 ) :2 968 ~2 970
  • 8Qian Weizhong, Liu Tang, Wang Zhanwen, et al. Effect of Nickel Addition on the Iron - Alumina Catalyst on the Morphology of AsGrown Carbon Nanotubes. Carbon,2003 ;41 (13) :2487 ~ 2493
  • 9Bartholomew C H. Mechanism of Catalyst Deactivation. Appl Catal,A,2001,212( 1 ) :17 ~60
  • 10Qian Weizhong, Liu Tang, Wei Fei, et al. Quantitative Raman Characterization of the Mixed Samples of Single and MultiWalled Carbon Nanotubes. Carbon,2003,41(9) :1851 ~ 1854

共引文献5

同被引文献22

引证文献2

二级引证文献7

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部