期刊文献+

一种非对称互联型粒子群算法 被引量:2

Asymmetric Fully Imformed Particle Swarm Optimization
下载PDF
导出
摘要 提出了一种非对称互联型粒子群算法(AFIPSO),它是对互联型粒子群算法的改进。此算法重新构造了加权函数,体现了粒子之间的非对称影响。随后对六种加权函数及其4种交叉组合进行了测试。试验结果表明:组合加权函数对算法的收敛速度和稳定性均有非常好的改善,在收敛率上几近完美。 A new algorithm,called Asymmetric Fully Informed Particle Swarm Optimization (AFIPSO),is given,It mends the way of FIPSO by newly constructing weighting functions,which are the embodiment of asymmetric influence between two particles,Then six weighting functions and their four cross combinations are tested,The simulation results have shown that the algorithm performance for applying the cross combinations of weighting functions is far better,faster and more stabile in convergence,especially with perfect convergence ratio.
出处 《计算机工程与应用》 CSCD 北大核心 2006年第32期48-50,71,共4页 Computer Engineering and Applications
关键词 非对称影响 互联型粒子群算法 组合加权函数 asymmetric influence FIPSO combinatorial weighting functions
  • 相关文献

参考文献5

  • 1EBERHART R C,KENNEDY J.A new optimizer using particle swarm theory[C]//Proceedings of the Sixth International Symposium on Micromachine and Human Science.Nagoya,Japan.1995:39-43.
  • 2MENDES R,KENNEDY J,NEVES J.The fully informed particle swarm:simpler,maybe better[J].IEEE Trans Evolutionary Computation,2004,8(3):204-210.
  • 3CLERC M,KENNEDY J.The particle swarm-explosion,stability,and convergence in a multidimensional complex space[J].IEEE Trans on Evolutionary Computation,2002,6(1):58-73.
  • 4KENNDEDY J,EBERHART R C.Particle swarm optimization[C]//Proceedings of IEEE International Conference on Neural Networks.Piscataway,1995:1942-1948.
  • 5KENNEDY J,MENDES R.Population structure and particle swarm performance[C]//Proc 2002 Congress on Evolutionary Computation.Honolulu,HI,2002:1671-1676.

同被引文献18

  • 1张蕾,杨波.并行粒子群优化算法的设计与实现[J].通信学报,2005,26(B01):289-292. 被引量:9
  • 2黄芳,樊晓平.基于岛屿群体模型的并行粒子群优化算法[J].控制与决策,2006,21(2):175-179. 被引量:41
  • 3黄芳,樊晓平,瞿志华.用协同演化并行PSO重构扩展的超二次曲面模型[J].计算机工程与应用,2006,42(13):15-18. 被引量:1
  • 4叶海燕,陈毓灵,高鹰.分组粒子群优化算法[J].广州大学学报(自然科学版),2007,6(2):64-67. 被引量:7
  • 5KennedyJ, Eberhart R C. Particle swarm optimization[C]. In:proceedings of IEEE International conference on Neural Networks,Piscataway, NJrIEEE Press,1995.4:1942-1948.
  • 6EberhartR C,Kennedy J. A new optimizer using particleswarm theory [C].In: Proc of the Sixth International Symposium onMicro Machine and Human Science, Nagoya, Japan, 1995:39-43.
  • 7ClercM. The Swarm and the Queen: Towards a deterministicand adaptive particle swarm optimization. The Congress ofEvolutionary Computation,Washington DC,USA,1999.
  • 8ShiY,Eberhart R C. A modified particle swarm optimizer[[J].In:IEEE World Congress on Computatio -nal Intelligence, 1998:69-73.
  • 9NatsukiHigasshi, Hitoshi Iba. Particle swarm optimizationwith Gaussion mutation [C],In: Proc of the Congress on EvolutionaryComputation, 2003:72-79.
  • 10Fvan den Bergh, Engelbrecht A P.A cooperative approachto particle swarm optimization [J].IEEE Transaction on EvolutionaryComputation,2004,8(3):225-239.

引证文献2

二级引证文献12

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部