期刊文献+

基于多小波和分维的图像融合算法

Study of Image Fusion Based on Multiwavelet Transform and Fractal Dimension
下载PDF
导出
摘要 多小波理论是小波理论的扩展,在图像处理方面具有单小波所不具有的优点。它能为图像提供一种比小波多分辨分析更精确的分析方法。在图像的多小波分解的不同尺度上的子图像间有自相似性,而自相似性又是分形分维的基础。于是,根据图像多小波分解的特点,提出了一种新的基于图像多小波分解的分维融合算法,将不同源图像经多小波变换分别分解成不同尺度的子图像,对高频子图像在相应的尺度上以分形分维作为权系数进行融合,对低频子图像在相应的尺度上以区域能量作为权系数进行融合,并分别采用多聚焦图像、可见光和红外图像作为源图像进行融合实验,实验结果表明该方法是可行的。 Multi-wavelet is an extension from wavelet theory,and has several particular advantages m companson with scalar wavelets on image processing.Multiwavelet analysis can offer a more precise way for image analysis than wavelet multi-resolution analysis.Because images in different levels of image multiwavelet decomposition were self-similar,which was the foundation of fractal,a new image fusion algorithm was presented based on image muhiwavelet decomposition and fractal dimension.Different source images were separately decomposed by multi-wavelet transform with different scales.Corresponding-level high frequency images were merged,with fractal dimension as weight.Corresponding-level lowest frequency images were merged,with energy as weight.An experiment was given using multi-focus images,visual light and infrared image separately as two source images.Experiment results show the algorithm is feasible.
出处 《计算机工程与应用》 CSCD 北大核心 2006年第32期83-86,共4页 Computer Engineering and Applications
基金 国家自然科学基金资助项目(60475021) 河南省杰出青年基金资助项目(0412000400) 国家教育部科研基金重点项目(03081)。
关键词 图像融合 离散多小波变换 分维 image fusion discrete muhiwavelet transform fractal dimension
  • 相关文献

参考文献10

  • 1SIMONE G,FARINA A,MORABITO F C,et al.Image fusion techniques for remote sensing applications[J].Information Fusion,2002,3(1):3-15.
  • 2POHL C,GENDEREN J L.Multisensor image fusion in remote sensing:concepts,methods and applications[J].International Journal of Remote Sensing,1998,9 (5):823-854.
  • 3BURT P T,ADELSON E H.The Laplacian pyramid as a compact image code[J].IEEE Transactions on Communications,1983,31 (4):532-540.
  • 4MALLAT S G.A theory for multiresolution signal decomposition:the wavelet representation[J].IEEE Transactions on Pattern Analysis and Machine Intelligence,1989,11 (7):674-693.
  • 5STRELA V.Multiwavelets:theory and application[D].Department of Mathematics,Massachusetts Institute of Technology,Massachusetts,USA,1996.
  • 6PESQUET B,VEHEL J L.Stochastic fractal models for image processing[J].IEEE Signal Processing Magazine,2002,19(5):48-62.
  • 7TATE N J,ATKINSON P M.Modelling scale in geographical information science[M].England:John Wiley & Sons Ltd,2001:13-35.
  • 8SWARNAKAR V,ACHARYA R S.Fractal dimension estimation using continuous alternating sequential filter pyramid[J].Image Processing,1995 (13):652-655.
  • 9PENTLAND A P.Fractal-based description of natural scene[J].IEEE Trans on Pattern Analysis and Machine Intelligence,1984,6(6):661-674.
  • 10QU G,ZHANG D,YAN P.Information measure for performance of image fusion[J].Electronics Letters,2002,38 (7):313-315.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部