摘要
标引是通过给音频-视频数据加入标记,对其内容进行描述,以便于信息的检索和查询。语音标引在媒体资产管理中扮演了很重要的脚色。介绍了一种基于EBF网络的语音标引辅助系统,该系统可自动识别标引员所说的短语,辅助标引员在视频媒体上实现标引。系统从语句中将这些短语分割出来,并通过EBF神经网络进行建模。实验结果证明,该系统具有实用性,在媒体资产管理方面有良好的应用前景。
The main objective of the indexing process is to assign labels to the audio-visual data in order to describe its content. Audio indexing plays a key role in this process. In this paper, a speech-based man-machine labeling system for media asset management is presented. The system recognizes the phrases spoken by the human annotator automatically and assists him to mark up shots of subjects in a video sequence. The phrases are segmented from short sentences and modeled by the elliptical basis function (EBF) networks. Experimental results indicate that the speech-based labeling system is practical and has great promise for media asset management.
出处
《声学技术》
CSCD
北大核心
2006年第5期478-481,共4页
Technical Acoustics
基金
上海市教委青年基金(04AB72)
上海市科委启明星计划资助(04QMX1441)
关键词
媒体资产管理
语音标引
EBF网络
media asset management
speech-based label
EBF neural network.