期刊文献+

基于核函数因素分解模型的表情合成与识别 被引量:4

Facial expression synthesis and recognition using a kernel-based factorization model
原文传递
导出
摘要 人脸图像合成是新一代人机交互中的重要技术。传统的三维模型加生理模型的方法可以生成真实的人脸表情图像,但是其中的计算复杂度很高。该文提出了一种基于样本的方法,将不同的人和不同的表情看作影响人脸表情图像的两种变化因素,利用因素分解模型巧妙地进行人脸表情图像合成。同时,分析了因素分解模型获得的身份子空间和表情子空间的特点,提出了一种在子空间中利用余弦距离进行身份和表情识别的新思路。从实验结果来看,这里提出的方法可以仅利用一张训练集内、外的人脸图像合成出该人在不同表情下逼真的脸部表情图像,同时可以合成库内的人在新表情下的表情图像。 Facial expression synthesis is an important technique in human computer interactions. The traditional 3-D reconstruction method using a face physiology model requires very complex computations, therefore, a sample-based method was developed to synthesize realistic facial expressions. To translate facial expressions, the model treats "human identity" and "facial expression" as two factors influencing the face appearance, with a kernel-based bilinear factorization model used to decouple their interactions. The distribution features of the subspaces obtained by factorization were used to develop a method to recognize people and expressions. Test results show that the method can successfully translate realistic facial expressions from one person to another.
作者 周川 林学訚
出处 《清华大学学报(自然科学版)》 EI CAS CSCD 北大核心 2006年第10期1751-1754,共4页 Journal of Tsinghua University(Science and Technology)
基金 国家"九七三"基础研究基金项目(2002CB312101) 国家自然科学基金资助项目(60433030)
关键词 人脸表情图像合成 人脸表情图像识别 因素分解模型 核函数方法 facial expression synthesis facial expression recognition factorization model kernel approaches
  • 相关文献

参考文献7

  • 1Lee Y,Terzopoulos D,Waters K.Realistic modeling for facial animation[C]∥ Proc ACM SIGGRAPH Conference on Computer Graphics.New York,NY,USA:ACM,1995:55-62.
  • 2Ezzat T,Poggio T.Facial Analysis and synthesis using image-based models[C]∥ Proc International Conference on Automatic Face and Gesture Recognition.Los Alamitos,CA,USA:IEEE,1996:116-121.
  • 3WANG Hongcheng,Ahuja N.Facial expression decomposition[C]∥ Proc IEEE International Conference on Computer Vision.Los Alamitos,CA,USA:IEEE,2003:958-965.
  • 4Tenenbaum J B,Freeman W T.Separating style and content with bilinear models[J].Neural Computation,2000,12(6):1247-1283.
  • 5Du Y,Lin X.Nonlinear factorization models using kernel approaches[C]∥ Proc Asian Conference on Computer Vision.Jeju Island,Korea,2004:426-431.
  • 6Du Y,Lin X.Multi-view face image synthesis using factorization models[C]∥ Proc International Workshop on HCI.Berlin,Germany:Springer-Verlag,2004:200-210.
  • 7Müller K R,Mika S,Ratsch G,et al.An introduction to kernel-based learning algorithms[J].IEEE Trans on Neural Networks,2001,12(2):181-202.

同被引文献30

  • 1WANG Yu-shun,ZHUANG Yue-ting,WU Fei.Data-driven facial animation based on manifold Bayesian regression[J].Journal of Zhejiang University-Science A(Applied Physics & Engineering),2006,7(4):556-563. 被引量:3
  • 2任江涛,黄焕宇,孙婧昊,印鉴.基于相关性分析及遗传算法的高维数据特征选择[J].计算机应用,2006,26(6):1403-1405. 被引量:17
  • 3王成章,尹宝才,孙艳丰,胡永利.改进的基于形变模型的三维人脸建模方法[J].自动化学报,2007,33(3):232-239. 被引量:30
  • 4Yang Yi, Shen Hengtao, Ma Zhigang, et al. 12,1 -norm regu- larized discriminative feature selection for unsupervised learn- ing[ C]//Proceedings of the 22nd international joint confer- ence on artificial intelligence. Menlo Park, CA : AAAI Press, 2011 : 1589-1594.
  • 5Ding C, Peng H. Minimum redundancy feature selection from microarray gene expression data[ J ]. Journal of Bioinformatics and Computational Biology ,2005,3 (2) : 185-205.
  • 6Nie Feiping, Huang Heng, Cai Xiao, et al. Efficient and robust feature selection via joint 12,1 -norms minimization [ C 1//Proc of NIPS. Vancouver,Canada: [ s. n. ] ,2010.
  • 7Chartrand R, Yin W. Iteratively reweighted algorithms for com- pressive sensing [ C ]//Proc of 33rd international conference on acoustics,speech,and signal processing. [ s. 1. I : [ s. n. ], 2008:3869-3872.
  • 8Wang Liping, Chen Songcan, Wang Yuanping. A unified algo- rithm for mixed 12,1 -minimizations and its application in fea- ture selection [ J [. Computational Optimization and Applica- tions ,2014,58 (2) :409-421.
  • 9Martinez A M, Benavente R. The AR face database [ R ]. Bar- celona : Pompeu Fabra Univ, 1998.
  • 10Li Z, Yang Y, Liu J, et al. Unsupervised feature selection using nonnegative spectral analysis [ C ]//Proe of twenty-sixth AAAI conference on artificial inteUigence. [ s. 1. ] : AAAI Press, 2012 : 1026-1032.

引证文献4

二级引证文献4

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部