期刊文献+

一种基于PSO-PID算法的分布式机器人实时控制 被引量:4

Distributed Robot Realtime Control Based on Particle Swarm Optimization PID Algorithm
下载PDF
导出
摘要 分析了粒子群优化(PSO)算法的原理、算法参数及其对算法性能的影响。以PSO算法为基础,提出了一种新的粒子群优化不完全微分PID算法。根据多关节机器人系统的特点,介绍了一种新的分布式机器人实时控制系统。系统采用双速率控制策略和分布式控制方式,机器人运动控制运用粒子群优化算法定时寻优PID参数,使其随着系统参数的变化而实时更新,实现最优不完全微分PID控制。实验结果表明,该系统设计科学、性能优越,新算法寻优能力强、控制效果好。 This paper analyzes the principle, parameters of particle swarm optimization (PSO) algorithm, and their influence on optimization performance of PSO. Based on PSO, a new PID control method with incomplete derivation based on particle swarm optimization algorithm is proposed. By the characteristic of many joints robot system, a new distributed robot realtime control system is presented. Twain velocity control strategy and distributed control mode are adopted, the parameters of PID control is optimized by particle swarm optimization algorithm in the motion control of robot, makes it realtime update with change of system's parameters, implements the optimal PID'control with incomplete derivation. The experimental results show that the design of system is scientific, performance is predominant, the optimization competence of new algorithm is finer, and the effect of control is good.
机构地区 中南大学
出处 《电气传动》 北大核心 2006年第11期38-42,46,共6页 Electric Drive
关键词 粒子群优化算法 不完全微分PID 分布式 机器人控制 particle swarm optimization(PSO) PID control with incomplete derivation distributed rohot control
  • 相关文献

参考文献11

  • 1Guillermo J Silva,Aniruddha Datta,Bhattacharyya S P.New Results on the Synthesis of PID Controllers[J].IEEE Transactions on Automatic Control,2002,47(2):241~252
  • 2Kennedy J,Eberhart R C.Particle Swarm Optimization[A].Proceeding of 1995 IEEE International Conference on Neural Networks[C].New York,NY,USA:IEEE,1995:1 942~1 948
  • 3Eberhart R C,Kennedy J.A New Optimizer Using Particle Swarm Theory[A].Proceedings of the Sixth International Symposium on Micro Machine and Human Science[C].New York,NY,USA:IEEE,1995:39~43
  • 4Ayed Salman,Imtiaz Abmad,Sabah AL-Madani.Particle Swarm Optimization for Task Assignment Problem[J].Microprocessors and Microsystems,2002,26:363~371
  • 5Clerc M.Discrete Particle Optimization Illustrated by the Traveling Salesman Problem[EB/OL].http://www.mauriceclerc,net,2000
  • 6Venter G,Sobieszczanski-Sobieski J.Multidisciplinary Optimization of a Trandport Aircraft Wing Using Particle Swarm Optimization[J].Structure Multidiseipline Optimization,2004,26 (1-2):121 ~ 131
  • 7Ziegler J G,Nichols N B.Optimum Setting for Automatic Controllers[J].ASME Transactions,1942(11):759~768
  • 8Eberhart R C,Shi Y.Particle Swarm Optimization:Developments,Applications and Resources[A].Proceedings of the 2001 Congress on Evolutionary Computation[C].Piscataway,NJ,USA:IEEE,2001:81~86
  • 9Shi Y,Eberhart R C.A Modified Particle Swarm Optimizer[A].Proceedings of 1998 IEEE International Conference on Evolutionary Computation[C].New York,NY,USA:IEEE,1998:69~73
  • 10Parsopoulos K E,Vrahatis M N.Recent Approaches to Global Optimization Problems Through Particle Swarm Optimization[J].Natural Computing,2002,1(2~3):235~306

二级参考文献5

共引文献16

同被引文献33

引证文献4

二级引证文献7

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部