期刊文献+

弱序列式回缩(LM)-空间的特征

Characterizations of Weakly Sequentially Retractive(LM)-Spaces
原文传递
导出
摘要 本文研究Retakh's条件(M_0),正则性和弱序列式回缩性之间的关系.对于(LM)-空间,弱序列式回缩性等价于正则性加上一个介于(Q_0)和(M_0)之间的条件对于(LN)-空间,我们获得了更满意的结果,证明了弱序列式回缩性等价于正则性加上条件(M_0),也等价于一个非常弱的正则性条件加上条件(M_0)(见文献[1-28]). We investigate the relationships between Retakh's condition (M0), regularity and weak sequential retractivity. For (LM)-spaces, weak sequential retractivity is equivalent to regularity plus a condition which lies between condition (M0) and (Q0)- For (LN)-spaces we obtain more satisfactory result. We prove that weak sequential retractivity is equivalent to regularity plus condition (M0) and hence is equivalent to a very weak regularity condition plus conditionc (M0) (see [1-28]).
作者 丘京辉
机构地区 苏州大学数学系
出处 《数学学报(中文版)》 SCIE CSCD 北大核心 2006年第6期1231-1238,共8页 Acta Mathematica Sinica:Chinese Series
基金 国家自然科学基金(10571035)
关键词 诱导极限 弱零调性 Retakh’s 条件 inductive limits weak acyclicity Retakh's condition
  • 相关文献

参考文献28

  • 1Bierstedt K. D., An introduction to locally convex inductive limits, in: Functional Analysis and Applications,Nice 1986, Singapore: World Sci., 1988, 35-133.
  • 2Bierstedt K. D., Bonet J., A question of D. Vogt on (LF)-spaces, Arch. Math. (Basel), 1993, 61: 170-172.
  • 3Biersted K. D., Bonet J., Weighted inductive limits of continuous functions, Math. Nachr., 1994, 165: 25-48.
  • 4Biersted K. D., Meise R., Bemerkungen uber die Approximationseigenschaft lokalkonvexer Funktionenraume,Math. Ann., 1974, 209: 99-107.
  • 5Bonet J., Fernandez C., Bounded sets in (LF)-spaces, Proc. Amer. Math. Soc., 1995, 123: 3717-3721.
  • 6Diaz J. C., Dierolf S., On duals of weakly acyciic (LF)-spaces, Proc. Amer. Math. Sot., 1997, 125:2897-2905.
  • 7Dieudonne J., Schwartz L., La dualite darts les espaces (F) et (LF), Ann. Inst. Fourier (Grenoble), 1949, 1:61-101.
  • 8Fernandez C., Regularity conditions on (LF)-spaces, Arch. Math. (Basel), 1990, 54: 380-383.
  • 9Floret K., Bases in sequentially retractive limit spaces, Studia Math., 1970, 38: 221-226.
  • 10Floret K., Folgenretraktive Sequenzen lokalkonvexer Raume, J. Reine Angew. Math., 1973, 259: 65-85.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部