摘要
引进了WB-环,研究了正则环为WB-环的等价刻画.如果A是正则环R上的有限生成投射右模而且Mn(R)都是WB-环(n∈N),若B,C是任何右犀模而且AOB≌AOC,证明了存在正交理想I,J,使得B/BI≤+C/CI且C/CJ≤+B/BJ.这也给出了QB-环上新的模比较性质.
We introduce the concept of WB-rings and investigate the necessary and sufficient conditions under which a regular ring is a WB-ring. Let A be a finitely generated projective right module over a regular ring R. Suppose that Mn(R) is a WB-ring for all n ∈ N. If B and C are any right R-modules such that A + B ≌ A + C, we prove that there exist orthogonal ideals I and J such that B/BI ≤+C/CI and C/CJ ≤+ B/BJ. This also gives some new comparable properties of modules over QB-rings.
出处
《数学学报(中文版)》
SCIE
CSCD
北大核心
2006年第6期1311-1320,共10页
Acta Mathematica Sinica:Chinese Series
关键词
正财环
WB-环
模
regular ring
WB-ring
module