期刊文献+

关于新几何体Γ_(-p)K的几个不等式 被引量:2

On Some Inequalities for the New Geometric BodyΓ__pK
原文传递
导出
摘要 本文研究了新几何体Γ_(-p)K与L_p-质心体和L_p-John椭球有关的几个有趣不等式,包括L_p-Busemann-Petty质心不等式的一种隔离,同时探讨了新几何体Γ_(-p)K的单调性. In this paper, some inequalities including the body Γ_pK associated with Lp-centroid body and Lp John ellipsoid, and the monotonicity of Γ_pK are shown, respecyively. In partcular, an isolated form of Lp-Busemann Petty centroid inequality is obtained.
出处 《数学学报(中文版)》 SCIE CSCD 北大核心 2006年第6期1327-1334,共8页 Acta Mathematica Sinica:Chinese Series
基金 国家自然科学基金(10271071) 湖北省教育厅重点科研项目(2003A005)
关键词 几何体Γ_pK Lp-质心体 Lp—John椭球 body Γ_pK Lp-centroid body Lp John ellipsoid
  • 相关文献

参考文献11

  • 1Gardner R. J., Geometric tomography, Cambridge: Cambridge Univ. Press, 1995.
  • 2Schneider R., Convex bodies: the Brunn-Minkowski theory, Cambridge: Cambridge Univ. Press, 1993.
  • 3Lutwak E. and Zhang G. Y., Blaschke-Santalo inequalities, J. Differential Geom,1997, 47: 1-16.
  • 4Lutwak E., Yang D. and Zhang G. Y., Lp affine isoperimetric inequalities, J. Differential Geom., 2000, 56:111-132.
  • 5Campi S. and Grochi P., The L^P-Busemann-Petty centroid inequality, Adv. Math., 2002, 167: 128-141.
  • 6S. Campi and P. Groehi, On the reverse L^P-Busemann-Petty-centr-oid inequalltyl Mathematika, 2002, 49:1-11.
  • 7Lutwak E,, Yang D. and Zhang G. Y., Lp John ellipsoids, Proc. London Math. Soc., 2005, 90: 497-520.
  • 8Lutwak E., Yang D. and Zhaug G. Y., Anew ellipsoid associated with convex dodies, Duke. Math. J., 2000,104: 375-390.
  • 9Firey W. J., p-means of convex bodies, Math. Scand., 1962, 10: 17-24.
  • 10Lutwak J., The Brunn-Minkowski-Firey theory Ⅰ: mixed volumes and the minkowski problem, J. Differential Geom., 1993, 38: 131-150.

同被引文献33

  • 1LEICHTWEIβK.Affine Geometry of Convex Bodies[M].Heidelberg:J A Barth,1998.
  • 2LINDENSTRAUSS J,MILMAN V D.Local Theroy of Normal Spaces and Convexity[C] //Handbook of Convex Ge-ometry.Amsterdam:North-Holland,1993:1149-1220.
  • 3MILMAN V D,PAJOR A.Isotropic Position and Inertia Ellipsoids and Zonoids of the Unit Ball of a Normed n-Dimen-sional Space[C] //Geometric Aspect of Functional Analysis.Berlin:Springer,1989:64-104.
  • 4LUTWAK E,YANG D,ZHANG Gao-yong.Lp-Affine Isoperimetric Inequalities[J].Differential Geom,2000,56:111-132.
  • 5LUTWAK E,ZHANG Gao-yong.Blaschke-SantalóInequalities[J].J Differential Geom,1997,47:1-16.
  • 6LUTWAK E.Centroid Bodies and Dual Mixed Volumes[J].Proc London Math Soc,1990,60(3):365-391.
  • 7GRINBERG E,ZHANG Gao-yong.Convolutions,Transforms and Convex Bodies[J].Proc London Math Soc,1999,78:77-115.
  • 8LUTWAK E,YANG D,ZHANG Gao-yong.A New Ellipsoid Associated with Convex Bodies[J].Duke Math J,2000,104:375-390.
  • 9LUTWAK E,YANG D,ZHANG Gao-yong.Lp-John Ellipsoids[J].Proc London Math Soc,2005,90:497-520.
  • 10RUBIN B.Intersection Bodies and Generalized Cosine Transforms[J].Advances in Mathematics,2008,218(3):696-727.

引证文献2

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部