期刊文献+

番茄转ER-sHSP基因植株构建及其抗冷性研究 被引量:14

The Construction and the Chilling-Resistance Ability of Endoplasmic Reticulum Small Heat Shock Protein (ER-sHSP) Transgenic Tomato Plants
下载PDF
导出
摘要 将CaMV35S启动子驱动的内质网小分子热激蛋白基因导入番茄,比较转基因、未转基因和转空载体番茄的抗冷能力。冷胁迫下,同对照相比,转基因番茄的冷害症状轻,叶绿素含量的损失少,体内积累的丙二醛(MDA)含量少,电解质外渗程度低,具有较高的净光合速率和最大光化学效率,并易于恢复由低温所引起的光抑制,表明转基因番茄具有较强的冷胁迫耐性,说明内质网小分子热激蛋白在植物抗冷过程中发挥重要作用。 The full-length endoplasmic reticulum small heat shock protein (ER-sHSP) cDNA using CaMV 35S promoter was transformed into the genome of tomato plants. The chilling tolerance of transgenic tomato plants, non-transgenic tomato plants and pROK Ⅱ-transformed tomato plants were studied. Under chilling stress treatment, compared with non-transgenic and pROK Ⅱ-transformed tomato plants, transgenic tomato plants exhibited slighter cold-injured symptoms, suffered less destruction of chlorophyll and electrolyte leakage. The content of MDA of transgenic tomato plants was lower than that of non-transgenic and pROK Ⅱ -transformed tomato plants, and transgenic tomato plants could keep up higher value of net photosynthetic rate, Fv/ Fm and could recover quickly from chilling-induced photosynthetic inhibition. The results showed that ER- sHSP played a key role in enhancing the chilling-resistance ability of plants.
出处 《园艺学报》 CAS CSCD 北大核心 2006年第5期989-994,共6页 Acta Horticulturae Sinica
基金 国家自然科学基金项目(30270132)
关键词 番茄 内质网 小分子热激蛋白 转基因 冷胁迫 Tomato Endoplasmic reticulum Small heat shock protein Transgenic Chilling stress
  • 相关文献

参考文献1

二级参考文献28

  • 1Chalker SL (1999). Environmental significance of anthocyanins in plant stress responses. Photochem Photobiol, 70:1-9.
  • 2Gitelson AA, Gritz Y, Merzlyak MN (2003). Relationships between leaf chlorophyll content and spectral reflectance and algorithms for non-destructive chlorophyll assessment in higher plant leaves. J Plant Physiol, 160:271-282.
  • 3Gustavsson N, Kokke BP, Harndahl U, Silow M, Bechtold U, Poghosyan Z, Murphy D, Boelens WC, Sundby C (2002). A peptide methionine sulfoxide reductase highly expressed in photosynthetic tissue in Arabidopsis thaliana can protect the chaperone-like activity of a chloroplast-localized small heat shock protein. Plant J, 29 (5): 543- 553.
  • 4Harndahl U, Buffoni-Hall R, Osteryoung KW, Vierling E, Bornman JF, Sundby C (1999). The chloroplasst heat shock protein undergoes oxidation-dependent conformational changes and may protect plants against oxidative stress. Cell Stress Chaperones, 4:129-138.
  • 5Harndahl U, Kokke BP, Gustavsson N, Linse S, Berggren K, Tjerneld F, Boelens WC, Sundby C (2001). The chaperonelike activity of a small heat shock protein is lost after sulfoxidation of conserved methionines in a surface-exposed amphipathic alpha-helix. Biochim Biophys Acta,1545:227-237.
  • 6Hectathom SA, Downs AD, Sharkey TD, Coleman JA (1998). The small, methionine-rich chloroplast heat-shock protein protects photosystem Ⅱ electron transport during heat stress. Plant Physiol, 116:439-444.
  • 7Kadyrzhanova DK, Vlachonasios KE, Ververidis P, Dilley DR (1998). Molecular cloning of a novel heat induced chilling tolerance related cDNA in tomato fruit by use of mRNA differential display. Plant Mol Biol, 36:885-895.
  • 8Krishna P, Sacco M, Cherutti JF, Hill S (1995). Cold-induced accumulation of hsp90 transcripts in Brassica napus. Plant Physiol, 107:915-923.
  • 9Li QB, Haskell DW, Guy CL (1999). Coordinate and noncoordinate expression of the stress 70 family and other molecular chaperones at high and low temperature in spinach and tomato. Plant Mol Biol, 39 (1): 21-34.
  • 10Liu J, Shono M (2001). Molecular cloning of mitochondria and endoplasmic reticulum localized small heat shock protein from tomato. Acta Bot Sin (植物学报), 43:138-145.

共引文献39

同被引文献205

引证文献14

二级引证文献57

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部