期刊文献+

基于PSO的模糊聚类算法 被引量:17

Fuzzy clustering algorithm based on PSO
下载PDF
导出
摘要 提出了一种基于模糊C-均值算法和粒子群算法的混合聚类算法。该算法结合PSO的全局搜索和FCM局部搜索的特点,将PSO优化聚类结果作为后续FCM算法的初始值,有效地克服了FCM对初始值敏感、易陷入局部最优和PSO算法局部搜索较弱的问题,同时增强了跳出局部最优的能力。实验表明,新算法得到的目标函数值更小,并能减小分类错误率,聚类效果优于单一使用FCM或PSO。 A new hybrid clustering algorithm based on particle swarm optimization and FCM algorithm is proposed. By incorporating the local and global search and taking the clustering result of PSO as the initialized value of the FCM, the algorithm eliminates FCM trapped local optimum and being sensitive to initial value effectively, and solves weaker local search of PSO. The ability of breaking away from the local optimum is improved by the new algorithm. The experimental results show that new algorithm not only has better goal function value but also reduces the classification error rate. The clustering performances are better than those of only using the FCM or the PSO.
作者 许磊 张凤鸣
出处 《计算机工程与设计》 CSCD 北大核心 2006年第21期4128-4129,共2页 Computer Engineering and Design
关键词 混合聚类 粒子群优化算法 模糊C-均值算法 全局优化 分类错误率 hybrid clustering particle swarm optimization fuzzy C- mean algorithm global optimization classification error rate
  • 相关文献

参考文献8

  • 1周驰,高海兵,高亮,章万国.粒子群优化算法[J].计算机应用研究,2003,20(12):7-11. 被引量:177
  • 2欧阳,成卫,韩逢庆.基于遗传算法的模糊c-均值聚类算法[J].重庆大学学报(自然科学版),2004,27(6):89-92. 被引量:8
  • 3Chen-Yi Chen,Fun Ye.Particle swarm optimization algorithm and its application to clustering analysis[C].Taipei,Taiwan:Proceedings of the IEEE International Conference on Networking,Sensing and Control,2004.789-794.
  • 4张洪刚,刘刚,郭军.FCM-VKNN聚类算法的研究[J].自动化学报,2002,28(4):631-636. 被引量:6
  • 5Gao Xinbo,Ji Hongbing,Xie Weixin.A novel FCM clustering algorithm for interval-valued data and fuzzy-valued data[C].Proceedings of ICSP,2000.1551-1555.
  • 6Elbeltagi E,Hegazy T,Grierson D.Comparison among five evolutionary-based optimization algorithms[J].Advanced Engineering Informatics,2005,19(1):43-53.
  • 7Yu Jian,Huang H K,Tian S F.An efficient optimality test for the fuzzy C-means algorithms[C].IEEE World Congress on Computational Intelligence,2000.86-91.
  • 8Paterlini S,Krink T.High performance clustering with differential evolution[C].Proceedings of the IEEE Congress on Evolutionary Computation,2004.2004-2011.

二级参考文献31

  • 1张晓缋,方浩,戴冠中.遗传算法的编码机制研究[J].信息与控制,1997,26(2):134-139. 被引量:93
  • 2杨伦标 高英仪.模糊数学[M].广州:华南理工大学出版社,1992..
  • 3[1]Kennedy J, Eberhart RC,Shi Y.Swarm Intelligence[M].San Francisco:Morgan Kaufman Publishers,2001.
  • 4[2]Mataric M.Designing and Understanding Adaptive Group Behavior[J].Adaptive Behavior,1995,4:1-12.
  • 5[3]Dorigo M,V Maniezzo,A Colorni.The Ant System:Optimization by a Colony of Cooperating Agents[J].IEEE Transactions on Systems, Man and Cybernetics, 1996.
  • 6[4]Kennedy J,Eberhart R C.Particle Swarm Optimization[C].Proceedings of IEEE International Conference on Neutral Networks,Perth,Australia,1995.1942-1948.
  • 7[5]Kennedy J.The Particle Swarm:Social Adaptation of Knowledge[C].Proceedings of IEEE International Conference on Evolutionary Computation,Indianapolis,Indiana,1997.
  • 8[6]Eberhart R C,Kennedy J.A New Optimizer Using Particle Swarm Theory[C].Proceedings of Sixth International Symposium Micro Machine and Human Science,Nagoya,Japan,1995.
  • 9[7]Shi Y H,Eberhart R C.Parameter Selection in Particle Swarm Optimization[C].Annual,1998.
  • 10[8]Eberhart R C, Shi Y H.Comparison between Genetic Algorithms and Particle Swarm Optimization[R].Annual Conference on Evolutionary Programming, San Diego,1998.

共引文献188

同被引文献136

引证文献17

二级引证文献72

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部