摘要
Hilbert曲线是多维结构降维的重要手段,在多维索引结构和图像处理等方面有着广泛的应用。传统的Hil-bert编码是通过复制部分Hilbert曲线,运用旋转等操作完成整体结构,时间复杂度为O(n2)。通过对Hilbert曲线基本特征的研究,本文提出了一种新的基于分划的Hilbert编码方法,新算法的时间复杂度为O(nlogn),本文最后通过实例对算法进行了分析。
The Hilbert curve is an important means in high-dimensional structural reduction, which is widely used in multi-dimensional index and image processing. The traditional coding algorithm is usually based on replicating part of the Hilbert curve, and using some operations like rotation to compose the total configuration, and it has a complexity of O(n^2 ). After investigating the essential characteristics of the Hilbert curve, this paper puts forward a new Hilbert coding algorithm with a complexity of O(nlogn) based on partitioning, and analyses the algorithm with practical instances.
出处
《计算机工程与科学》
CSCD
2006年第11期63-65,共3页
Computer Engineering & Science
关键词
降维
HILBERT
分划
算法
dimensional reduction
Hilbert
partitioning
algorithm