期刊文献+

基于近似密度函数的医学图像聚类分析研究 被引量:16

Research on Medical Image Clustering Based on Approximate Density Function
下载PDF
导出
摘要 针对医学图像数据难以用数学模型来表述和聚类的问题,提出一种基于近似密度函数的医学图像聚类分析方法.该方法采用核密度估计模型来构造近似密度函数,利用爬山策略来提取聚类模式.基于真实的人体腹部医学图像数据集的实验结果表明,该方法可以取得较好的聚类效果. It is difficult to represent and cluster medical image data by mathematic model. In order to address this problem, an medical image clustering analysis method based on approximate density function is designed. This method uses kernel density estimation model to construct the approximate density function, and takes hill climbing strategy to extract clustering patterns. Results of experiments show that it can achieve good effect on real human abdomen medical images.
出处 《计算机研究与发展》 EI CSCD 北大核心 2006年第11期1947-1952,共6页 Journal of Computer Research and Development
基金 国家自然科学基金项目(60572112) 江苏省软件与集成电路专项基金项目(苏信软[2005]196)
关键词 密度估计 医学图像 聚类分析 爬山算法 density estimation medical image clustering analysis hill climbing
  • 相关文献

参考文献13

  • 1Guy B Coleman,Harry C Andrews.Image segmentation by clustering[J].Proceedings of the IEEE,1979,67(5):773-785
  • 2C Stewart,Y C Lu,V Larson.A neural clustering approach for high resolution radar target classification[J].Pattern Recognition,1994,27(4):503-513
  • 3Massimiliano Pavan,Marcello Pelillo.A new graph-theoretic approach to clustering and segmentation[C].In:Proc of the 2003 of IEEE Computer Vision and Pattern Recognition.Los Alamitos,CA:IEEE Computer Society Press,2003.145-152
  • 4Jan Puzicha,Joachim M Buhmann,Thomas Hofmann.Histogram clustering for unsupervised image segmentation[C].In:Proc of the 1999 Computer Vision and Pattern Recognition.Los Alamitos,CA:IEEE Computer Society Press,1999.2602-2608
  • 5Matthias Heiler,Jens Keuche,Christoph Schorr.Semi-definite clustering for image segmentation with apriori knowledge[G].In:Proc of the 2005 27th Annual Meeting of the German Association for Pattern Recognition,LNCS 3663.New York:Springer,2005.309-317
  • 6M Ester,H Kriegel,J Sander,et al.A density-based algorithm for discovering clusters in large spatial databases with noise[C].In:Proc of the 1996 2nd Int'l Conf on Knowledge Discovery and Data Mining.Portland:AAAI Press,1996.226-231
  • 7X Xu,M Ester,H P Kriegel,et al.A distribution-based clustering algorithm for mining in large spatial databases[C].In:Proc of the 1998 14th Int'l Conf on Data Engineering.Los Alamitos,CA:IEEE Computer Society Press,1998.324-331
  • 8A Hinneburg,D Keim.An efficient approach to clustering in large multimedia databases with noise[C].In:Proc of the 1998 4th Int'l Conf on Knowledge Discovery and Data Mining.New York:AAAI Press,1998.58-65
  • 9Alexander Hinneburg,A Daniel Keim.A general approach to clustering in large databases with noise[J].Knowledge and Information Systems,2003,5(4):387-415
  • 10Li Cunhua,Sun Zhihui,Song Yuqing.DENCLUE-M:Boost-ing DENCLUE algorithm by mean approximation on grids[G].In:Proc of the 4th Int'l Conf on Advances in Web-Age Information Management,LNCS 2762.Berlin:Springer,2003.202-213

同被引文献160

引证文献16

二级引证文献79

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部