期刊文献+

位置定向自旋标记——电子顺磁共振技术在蛋白质结构研究中的应用 被引量:3

Application of site-directed spin labeling combined with electron paramagnetic resonance to protein structure studies
原文传递
导出
摘要 位置定向的自旋标记(SDSL)技术结合电子顺磁共振(EPR)波谱技术成为检测蛋白质结构的有力工具。目前SDSL正经历快速发展的应用阶段。本文主要讨论SDSL-EPR技术在蛋白质二级和三级结构的检测中的应用。主要包括自旋标记物侧链易趋性(accessibility)和运动性的改变,膜蛋白位形图,静电势,膜蛋白在膜表面的位置定向,残基间距离以及时间分辨结构改变的研究。这些改变可以在毫秒和纳秒范围内得到检测,从而实现蛋白在行使功能时构象改变的检测。该方法对蛋白分子的大小没有限制,样品量可以很少,有时50-100皮摩尔(pmol)即可。所有这些特点使得SDSL可以在蛋白质结构和动力学研究中得到广泛应用。 Site-directed spin labeling (SDSL) combined with electron paramagnetic resonance (EPR) spectroscopy is a powerful tool for detecting structure of proteins. Application of SDSL is experiencing a stage of rapid evolution. In this review the application of SDSL-EPR to determining secondary and tertiary structure of proteins, such as the changes in the mobility and solvent accessibility of the spin labeled side chains, membrane protein topography, electrostatic potentials, and the orientation of proteins at membrane surfaces, inter-residue distances and time-resolved changes in protein is illustrated. These events can be monitored in the millisecond or nanosecond time-scale, making it possible to follow structural changes during functioning. There is no upper limit to the size of proteins investigated, and sometimes only 50 - 100 picomoles(pmol) of protein ore required. These features make site-directed spin labeling an attractive approach for the study of structure and dynamics of a wide range of systems.
作者 王长振 吴可
出处 《军事医学科学院院刊》 CSCD 北大核心 2006年第5期472-475,共4页 Bulletin of the Academy of Military Medical Sciences
关键词 自旋标记物 电子自旋共振谱学 蛋白质组 spin labels electron spin resonance spectroscopy proteome
  • 相关文献

参考文献33

  • 1Lieberman RA,Sands RH,Fee JA.A study of the electron paramagnetic resonance properties of single monoclinic crystals of bovine superoxide dismutase[J].J Biol Chem,1982,257(1):336-344.
  • 2Stone TJ,Buckman T,Nordio PL,et al.Spin-labeled biomolecules[J].Proc Natl Acad Sci USA,1965,54(4):1010-1017.
  • 3Farahbakhsh ZT,Ridge KD,Khorana HG,et al.Mapping light-dependent structural changes in the cytoplasmic loop connecting helices C and D in rhodopsin:a site-directed spin labeling study[J].Biochemistry,1995,34(27):8812-8819.
  • 4Berengian AR,Bova MP,Mchaourab HS.Structure and function of the conserved domain in alphaA-crystallin:site-directed spin labeling identifies a beta-strand located near a subunit interface[J].Biochemistry,1997,36(33):9951-9957.
  • 5Fu Z,Aronoff-Spencer E,Backer JM,et al.The structure of the inter-SH2 domain of class ⅠA phosphoinositide 3-kinase determined by site-directed spin labeling EPR and homology modeling[J].Proc Natl Acad Sci USA,2003,100(6):3275-3280.
  • 6Jacobsen K,Oga S,Hubbell WL,et al.Determination of the orientation of T4 lysozyme vectorially bound to a planar-supported lipid bilayer using site-directed spin labeling[J].Biophys J,2005,88(6):4351-4365.
  • 7Wilkins MR,Sanchez JC,Williams KL,et al.Current challenges and future applications for protein maps and post-translational vector maps in proteome projects[J].Electrophoresis,1996,17(5):830-838.
  • 8Wilkins MR,Sanchez JC,Gooley AA,et al.Progress with proteome projects:why all proteins expressed by a genome should be identified and how to do it[J].Biotechnol Genet Eng Rev,1996,13:19-50.
  • 9Berliner LJ.Spin labeling:the next millennium[M].New York:Plenum Press,1998.1-26.
  • 10Shin YK,Levinthal C,Levinthal F,et al.Colincin E1 binding to membranes:time-resolved site-directed studies of spin-labeled mutants[J].Science,1993,259(5097):960-963.

同被引文献89

  • 1王长振,杨俊涛,周宇,丛建波,先宏,郭林超,唐丽,吴可.LSECtin CRD结构域的运行性研究[J].生物物理学报,2009,25(S1):85-86. 被引量:2
  • 2Liu W, Tang L, Zhang G, et al. Characterization of a novel C-type lectin-like gene, LSECtin: demonstration of carbohydrate binding and expression in sinusoidal endothelial cells of liver and lymph node. J Biol Chem, 2004, 279(18) : 18748-18758.
  • 3Dominguez-Soto A, Aragoneses-Fenoll L, Gomez-Aguado F, et al. The pathogen receptor liver and lymph node sinusoidal endotelial cell C-type lectin is expressed in human Kupffer cells and regulated by PU. 1. Hepatology, 2009, 49(1) : 287-296.
  • 4Gramberg T, Hofmann H, Moller P, et al. LSECtin interacts with filovirus glycoproteins and the spike protein of SARS coronavirus. Virology, 2005, 340(2): 224-236.
  • 5Powlesland AS, Fisch T, Taylor ME, et al. A novel mechanism for LSECtin binding to Ebola virus surface glycoprotein through truncated glycans. J Biol Chem, 2008, 283 (1): 593-602.
  • 6Dominguez-Soto A, Aragoneses-Fenoll L, Martin-Gayo E, et al. The DC-SIGN-related lectin LSECtin mediates antigen capture and pathogen binding by human myeloid cells. Blood, 2007, 109 (12) : 5337-5345.
  • 7Li Y, Hao B, Kuai X, et al. C-type lectin LSECtin interacts with DC-SIGNR and is involved in hepatitis C virus binding. Mol Cell Biochem, 2009, 327 (1-2) : 183-190.
  • 8Tang L, Yang J, Liu W, et al. Liver sinusoidal endothelial cell lectin, LSECtin, negatively regulates hepatic T-cell immune response. Gastroenterology, 2009, 137 (4) : 1498-1508. e1-5.
  • 9Weis WI, Taylor ME, Driekamer K. The C-type lectin superfamily in the immune system. Immunol Rev, 1998, 163: 19-34.
  • 10Kilpatrick DC. Animal lectins: a historical introduction and overview. Biochim Biophys Acta, 2002, 1572(2-3) : 187-197.

引证文献3

二级引证文献4

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部