期刊文献+

Cylinder Coalgebras and Cylinder Coproducts for Quasitriangular Hopf Algebras

关于拟三角Hopf代数的Cylinder余代数和Cylinder余积(英文)
下载PDF
导出
摘要 This paper introduces the concepts of cylinder coalgebras and cylinder coproducts for quasitriangular bialgebras, and points out that there exists an anti-coalgebra isomorphism (H,△^-)≌ (H,△^-), where (H, △^-) is the cylinder coproduct, and (H,△^-) is the braided coproduct given by Kass. For any finite dimensional Hopf algebra H, the Drinfel'd double (D(H),△^-D(H)) is proved to be the cylinder coproduct. Let (H, H, R) be copaired Hopf algebras. If R ∈ Z(H×H) with inverse R-1 and skew inverse R, then the twisted coalgebra (H^R)^R-1 is constructed via twice twists, whose comultiplication is exactly the cylinder coproduct. Moreover, for any generalized Long dimodule, some solutions for Yang-Baxter equations, four braid pairs and Long equations are constructed via cylinder twists. 本文引入两个概念,即,关于拟三角双代数的cylinder余代数和cylinder余积,并指出存在一个反余代数同构:(H,■)≌(H,■),其中(H,■)是cylinder余积,(H,■)是辫余积,对任意有限维Hopf代数H,我们证明Drinfel'd量子偶(D(H),■_(D(H)))是cylinder余积.设(H,H,R)是余配对Hopf代数,如果R∈Z(H■H),则通过两次扭曲,我们可以构造扭曲余代数(H~■)R^(-1),它的余乘法恰是cylinder余积.而且对任意的广义Long重模,通过cylinder扭曲,我们可以构造Yang-Baxter方程,四辫对和Long方程.
作者 张良云 李方
出处 《Journal of Mathematical Research and Exposition》 CSCD 北大核心 2006年第4期635-648,共14页 数学研究与评论(英文版)
基金 the National Natural Science Foundation of China(10571153),and Postdoctoral Science Foundation of China(2005037713)
关键词 quasitriangular Hopf algebras cylinder coalgebras cylinder coproducts braided coproducts. 拟三角Hopf代数 cylinder余代数 cylinder余积 辫余积
  • 相关文献

参考文献9

  • 1MONTGOMERY S. Hopf Algebras and Their Actions on Rings [M]. CBMS, Lect. Notes 82:1, 1993.
  • 2DIECK T, OLDENBURG R H. Quantum groups and cylinder braiding [J]. Forum Math., 1998, 10: 619-639.
  • 3TAKEUCHI M. The cylinder pro'duct and cylinder matrices [J]. J. Algelbra, 1999, 222: 485-499.
  • 4DASCALESCU S, RAIANU S, ZHANG Yin-huo. Finite Hopf-GaJois coextensions, crossed coproducts, andduality [J]. J. Algebra, 1995, 178: 400-413.
  • 5KAFFMAN L H, RADFOR.D D E. A necessary and sufficient condition for a finite-dimensional Drinfel'd double to be a ribbon Hopf algebra [J]. J. Algebra, 1993, 159: 98-114.
  • 6MILITAR.U G. A class of non-symmetric solutions for the integrability condition of the Knizhnik-Zamolodchikov equation: a Hopf algebra approach [J]. Comm. Algebra, 1999, 2T: 2393-2407.
  • 7ZHANG Liang-yun, TONG Wen-tingl Quantum Yang-Baxter H-module algebras and their braided products[J]. Comm. Algebra, 2003, 81: 2471-2495.
  • 8ZHANG Liang-yun, zHU Jia-gui, TONG Wen-ring. Relative Yetter-Drinfel'd modules and twisted Hopf modules as well as their fundarnental structure theorems [J]. Acta Math. Sinica, 2003, 46: 1143-1152. (in Chinese)
  • 9MAJID'S. Foundations of Quantum Group Theory [M]. Cambridge University Press, Cambridge, 1995.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部