摘要
本文提出和研究3个新型的具有离散参数齐次随机场{x(m,n)}的马氏性问题,求出了它们具有马氏性的充分必要条件.
Generally, the definations of the Markov type for homogeneous random field as follows:
Let HX(T)be the closed linear manifold spanned by all X(m,n)(m,n)∈T,Tp belong to T ,(m',n')∈T,if PHX(T)X(m',n')=PHX(t0)X(m',n'),then we say that HX(T) has the Morkov property for Hx(T0) at X(m',n').In this paper,three types are posed and discussed;
1).T={(m,n),-∞〈m〈∞,n≤0,(m,n)≠(0,0)};T0={(m,-1),-∞〈m〈∞,or(m,0),-∞〈m〈∞,m≠0〉,X(m',n)=X(0,0).
2).T={(m,n),-∞〈m,n〈∞,n≠0,or(m,0),-∞〈m≤-1};
T0={(m,n),-∞〈m〈∞,n=±1,or(m,0),-∞〈m≤-1},X(m',n')=X(0,0).
3).T={(m,n),-∞〈m,n〈∞,(m,n)≠(0,0)};
T0={(m,n),-∞〈m〈∞,n=±1,or(m,n0),-∞〈m≤-1},X(m',n')=X(0,0).
关键词
线性预测
预测值
预测误差
马氏性
linear prediction
predictor
predictor error
Markov property.