期刊文献+

一种遥感图像高精度自动拼接算法 被引量:2

An Automatic and High Precise Mosaic Algorithm for RS Image
下载PDF
导出
摘要 图像的自动拼接在地理信息系统和全景视频系统中应用广泛,但是传统的自动拼接算法在拼接含有大片相似区域的图片时精度不高,效果不理想.本文在传统算法的基础上,提出一种高精度的自动拼接算法,利用基于特征的算法提取特征点,利用基于像素的算法寻找匹配块,然后根据RANSAC原理精确计算图片的匹配关系.实验证实,该算法在图片包含大量相似区域及重叠部分相对较小的情况下,有比传统算法更高的拼接精度,而计算量并未增加. Automatic image mosaics are widely used in GIS and Panoramic Video System, but traditional algorithms can't cope well with the images which contain a lot of similar areas. In order to solve this problem, we propose a new algorithm based on the conventional algorithms. First, we extract the feature points. Second, looking for the matching block, and finally we obtain the point transformation parameters between two images using robust RANSAC algorithm. The experiments show that our algorithm can perform more effectively than traditional algorithms when the images have larger similar areas and less overlap.
出处 《湘南学院学报》 2006年第5期62-66,共5页 Journal of Xiangnan University
基金 国家973计划课题资助(课题编号:2002CB312105)
关键词 图像拼接 特征点 基于像素 RANSAC image mosaic feature point based on pixel RANSAC
  • 相关文献

参考文献7

二级参考文献4

共引文献148

同被引文献20

  • 1刘坡,匡纲要.遥感图像的图像镶嵌方法[J].电脑知识与技术,2007(1):197-198. 被引量:4
  • 2Irani M,Anandan P,Bergen J,et al. Efficient representations of video sequences and their applications [J].Signal Processing :Image Communication, 1996,8(4):327- 351.
  • 3Gluckman J,Nayar S,Thoresz K . Real-time omnidirectional and panoramic stereo [A].In DARPA Image Understanding Workshop, 1998,299-303.
  • 4Szeliski R. Video mosaics for virtual environments[J].IEEE Trans Computer Graphics and Applications,1996,16(2):22-20..
  • 5Brown L G.A survey of Image registration techniques[J].ACM Computer. Surv.1992,24 (4):325-376.
  • 6Castro E D,Morandi C.Registration of Translated and Rotated Images Using Finite Fourier Transforms [J].IEEE Transactions on Pattern Analysis and Machine Intelligence, PAMI, 1987. 9 (5): 700--703.
  • 7David G. Lowe. Distinctive image features from scale-invariant keypoints[J], International Journal of Computer Vision,2004.
  • 8Harris C,Stephens M.A combined coner and edge detector[C]//In Proc.Alvey Hlf Vision.England:Manchester University Press.1988: 189--192.
  • 9Brown.M.Lowe D G.Invariant Features From Interest Point Groups [C]//In British Machine Vision Colfference.Cardiff, Wales:[s. n.],2002:656-665.
  • 10Lowe D G, Distinctive Image Features from Scale--Invariant Keypoints [J].International Journal of Computer Vision,2004,60(2): 91--110.

引证文献2

二级引证文献14

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部