期刊文献+

基于ANN逆模型补偿的复合控制系统仿真 被引量:1

Simulation of Compound Control Systems Based on Compensation of ANN Inverse Model
下载PDF
导出
摘要 为对复杂非线性系统进行辨识建模和实施有效控制,分析了基于神经网络的非线性系统逆模型的辨识和控制原理,研究了基于神经网络的非线性系统逆模型补偿的复合控制方法。基于复合控制思想,对常规PID控制器+前馈神经网络逆模型补偿的复合控制结构方案进行了仿真。仿真结果表明,基于神经网络的非线性系统逆模型补偿的复合控制结构方案是有效的、相对简单的网络结构,可提高逆模型的泛化能力和非线性系统的控制精度。 In order to identify, model, effectively control to complicated nonlinear systems, the principle of identification and control of the inverse model for nonlinear system based on artificial neural network (ANN)is analyzed. The compound control structure scheme of inverse model offset for nonlinear system based on ANN is studied. Simulation study is done for the compound control scheme of the conventional PID control method with offset of the inverse model of muhilayer feedforward network ANN. The simulation results show that the compound control structure scheme designed is successful and relatively simple network architecture, the generalization ability of the inverse model and the control precision for nonlinear systems can be raised.
作者 曲东才 何友
出处 《控制工程》 CSCD 2006年第6期533-535,566,共4页 Control Engineering of China
关键词 神经网络 非线性系统 逆模型 复合控制 仿真 neural networks nonlinear system inverse model compound control simulation
  • 相关文献

参考文献5

  • 1威德罗B 瓦莱斯E.自适应逆控制[M].西安:西安交通大学出版社,2000.73-75.
  • 2Antsaklis P J.Neural networks in control system:special section on neural networks for systems and control[J].IEEE Control Systems Magazine,1990,4(3):3-5.
  • 3Narendra K,Parthasarathy K.Identification and control of dynamical using neural networks[J].IEEE Trans On Neural Networks,1990,1(1):4-27.
  • 4Hunt K J,Sbarbaro D,et al.Neural networks for control systems:a survey[J].IEEE Automatica,1992,28(6):1083-1112.
  • 5Norgaard M,Ravn O,Poulsen N K,et al.Neural networks for modelling and control of dynamic systems[M].London:Springer-Verlag,2000.

共引文献6

同被引文献14

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部