期刊文献+

一类KdV-Burgers型方程的整体适定性

The well-posed problem of the KdV-Burgers type equation.
下载PDF
导出
摘要 研究一类KdV-Burgers型方程ut+uxxx+uux+|Dx|2αu=0,t∈R+,x∈R,其中0≤α≤1,在空间Hs(R)上的适定性和不适定性问题.证明了当s>-α时上述方程在空间Hs(R)上是整体适定的,而当s<α-32(2-α)时在空间.Hs(R)上是不适定的. The well-posedness and ill posedness are considered for the KdV-Burgers type equation ul+uxxx+uus+|Dx|^2αu=0,t∈R^+,x∈R,Where≤α≤1,The equation is well-posedness in H^s(R) when s〉-α,while it's illposedness in H^s(R) when s〈α-3/2(2-α).
机构地区 浙江大学数学系
出处 《浙江大学学报(理学版)》 CAS CSCD 北大核心 2006年第6期619-624,共6页 Journal of Zhejiang University(Science Edition)
基金 国家自然科学基金资助项目(10271108)
关键词 KDV-BURGERS方程 CAUCHY问题 双线性估计 KdV-Burgers equatiom Cauchy problem bilinear estimate
  • 相关文献

参考文献5

  • 1KENIG C E,PONCE G,VEGA L.Oscillatory integrals and regularity of dispersive equations[J].Indiana Univ Math,1991,40(1):33-69.
  • 2TZVETKOV N.Remark on the ill-posedness for KdV equation[J].Paris:C R Acad Sci,1999,329 (12):1043-1047.
  • 3MONLINEF L,RIBAUD F.On the low regularity of the Korteweg-de Vries-Burgers equation[J].International Mathematics Reserch Notices,2002,37:1979-2005.
  • 4GINIBRE J,TSUTSUMI Y,VELO G.The local Cauchy problem for the Zakharov system[J].J Funct Analysis,1997,151(2):384-436.
  • 5章志飞.关于半线性热方程整体解的注记[J].浙江大学学报(理学版),2003,30(6):609-611. 被引量:1

二级参考文献7

  • 1WEISSLER F B. Local existence and non existence for semilinear parabolic equation in LP[J]. Indiana Univ Math J, 1980, 29(1):79-102.
  • 2BERGH J, LOFSTROM J. Interpolation spaces, An Introduction [M]. Berlin/New York: Springer-Verlag, 1976.
  • 3TRIEBLE H. Theory of Function Spaces, Monograph in Mathematics[M]. Boston : Birkh auser, 1983.
  • 4CANNONE M. Ondelettes, Paraproduits et Navier-Stokes[M]. Paris: Diderot Editeur, 1995.
  • 5CANNONE M. A generalisation of a theorem by Kato on Navier-Stokes equations I-J3. Revista Matematica Iberoamericana, 19 9 7, 13 (3) : 515 - 5 41.
  • 6PAZY A. Semigroups of Linear Operators and Applications to Partial Differential Equations [M]. Berlin/'New York: Springer-Verlag, 1983.
  • 7KATO T. Strong Lp solutions of the Navier-Stokes equations in Rm with applications to weak solutions[J]. Math Zeit, 1984, 187(4) :471 -480.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部