摘要
讨论了随机场重对数律精确渐近性的一种形式,设{X,Xk,k∈Zd+,X(i),i≥1}是独立同分布的随机变量序列,且EX=0,EX2=2σ<∞,则li mε0ε2∑n1|n|(log|n|)dP(|Sn|≥ε|n|loglog|n|)=(d-σ21)!.
One orecise asymptotics is obtained in the law of the iterated logarithm of random fields, let {X,Xk,k∈Z+^d,x(i),i≥1}be the i. i. d random variables, and EX=0,EX^2=σ^2〈∞, the result is proved as follows.
limc→0ε^2∑n 1/|n|(log|n|)^dP(|Sn|≥ε√|n|loglog|n|)=σ^2/(d-1)!
出处
《浙江大学学报(理学版)》
CAS
CSCD
北大核心
2006年第6期629-631,共3页
Journal of Zhejiang University(Science Edition)
关键词
精确渐近性
重对数律
随机场
precise asymptoties
law of iterated logarithm
random fileds