期刊文献+

预处理的校正梯度路径信赖域算法 被引量:1

Preconditioned modified gradient path trust region algorithm.
下载PDF
导出
摘要 信赖域算法是最优化中广泛使用的一种方法.在迭代的每一步都要解信赖域子问题,在众多解子问题的方法中,校正梯度路径算法利用系统的特征值和特征向量在整个维数空间求出子问题的解.虽然这个方法较吸引人,但现有的校正梯度路径算法不太可行,因为在每一步迭代中它要求整个特征系统的计算或者矩阵的重复分解.提出了一种预处理的校正梯度信赖域算法.该算法在一步迭代中仅通过对对称矩阵进行一次Bunch-Parlett分解就在全空间中求出子问题的解,再用单位下三角矩阵因子去标度问题的变量,预处理的校正梯度路径由此形成.算法在通常使用的条件下有好的收敛性,对各种模型的优化问题的计算结果也显示出算法的高效性. Trust region algorithm is a kind of method that is widely used in optimization. It solves a trust region subproblem at each iteration. Among the methods solving the subproblem, the modified gradient path algorithm obtains the solution to the subproblem in full-dimensional space by using the eigenvalues and eigenvectors of the system. Although the idea is attractive, the existing modified gradient path method seems impractical because it requires either the calculation of the full eigensystem of a matrix or repeated factorizations of matrices at each iteration. A preeonditioned modified gradient path trust region algorithm is proposed. The algorithm finds a solution to the subproblem in full-dimensional space by just one Bunch-Parlett factorization for symmetric matrices at each iteration and by using the resulting unit lower triangular factor to scale the variables in the problem. A preconditioned modified gradient path can then be formed easily. The algorithm has good convergence properties under commonly used conditions. Computational results for different scale optimization problems are presented, which shows that the algorithm is effective.
出处 《浙江大学学报(理学版)》 CAS CSCD 北大核心 2006年第6期636-641,共6页 Journal of Zhejiang University(Science Edition)
关键词 信赖域方法 无约束优化 Bunch-Parlett分解 校正梯度路径 整体收敛 Trust region method unconstrained optimization Bunch-Parlett factorization modified gradient paths global convergence
  • 相关文献

参考文献13

  • 1POWELL M J D.A hybrid method for nonlinear equations[C] // Numerical Methods for Nonlinear Algebraic Equations.New York:Gordon and Breach Science Publishers,1970.
  • 2DENNIS J E,MEI H H W.Two new unconstrained optimization algorithms which use function and gradient values[J].J of Optimization Theory and Applications,1979,28(3):453-482.
  • 3SORENSEN D C.Newton's method with a model trust-region modification[J].SIAM J on Numerical Analysis,1982,19(2):409-426.
  • 4MORE J J,SORENSEN D C.Computing a trust region modification[J].SIAM J on Science and Statistical Computing,1983,4(3):553-572.
  • 5BULTEAU J P,VIAL J P.A restricted trust region algorithm for unconstrained optimization[J].J of Optimization Theory and Applications,1985,47(4):413-434.
  • 6BYRD R H,SCHNABEL R B,SHULTZ G A.Approximate solution of the trust region problem by minimization over two-dimensional subspaces[J].Mathematical Programming,1988,40(3):247-263.
  • 7ZHANG J Z,XU C X.A class of indefinite dogleg path methods for unconstrained optimization[J].SIAM J on Optimization,1999,9(3):646-667.
  • 8BUNCH J R,PARLETT B N.Direct method for solving symmetric indefinite systems of linear equations[J].SIAM J on Numerical Analysis,1971,8(4):639-655.
  • 9BULTEAU J P,VIAL J P.Curvilinear path and trust region in unconstrained optimization:a convergence analysis[J].Mathematical Programming Study,1987,30(1):82-101.
  • 10XU C X,ZHANG J Z.Scaled optimal path trust-region algorithm[J].J of Optimization Theory and Applications,1999,102(1):127-146.

同被引文献4

  • 1Hiroshi Yabe,Masahiro Takano. Global Convergence Properties of Nonlinear Conjugate Gradient Methods with Modified Secant Condition[J] 2004,Computational Optimization and Applications(2):203~225
  • 2Y.H. Dai,Y. Yuan. An Efficient Hybrid Conjugate Gradient Method for Unconstrained Optimization[J] 2001,Annals of Operations Research(1-4):33~47
  • 3Y. -H. Dai,L. -Z. Liao. New Conjugacy Conditions and Related Nonlinear Conjugate Gradient Methods[J] 2001,Applied Mathematics & Optimization(1):87~101
  • 4Y. Liu,C. Storey. Efficient generalized conjugate gradient algorithms, part 1: Theory[J] 1991,Journal of Optimization Theory and Applications(1):129~137

引证文献1

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部