期刊文献+

基于改进梯度向量流形变模型的动目标检测方法 被引量:1

Detection of Motion-Target Based on Improved Gradient Vector Flow Snake Model
下载PDF
导出
摘要 针对现有图像序列动目标检测技术抗噪声能力较差、跟踪性能鲁棒性不强的不足,提出了一种改进的梯度向量流形变模型算法,该算法构造了新的梯度向量场,利用图像灰度梯度信息、帧间运动信息以及邻域灰度信息相结合进行梯度向量场计算.仿真试验结果表明,该方法较好地克服了图像序列中随机噪声的影响,计算出的梯度向量场基本没有干扰区域,同传统向量场相比较,有效地提高了算法的抗噪能力和跟踪结果的准确性,可更好地实现图像序列的动目标检测. Aiming at the shortcomings of weak disturbance-resisting capability and poor robustness in those current motion-target detecting algorithms, an improved gradient vector flow (GVF) snake algorithm is presented, which integrates the neighbor gray-level information, inter-frame motion information and the image gradient information to calculate the GVF. Experiments indicate that this method overcomes the influence of noise disturbance in image sequence and that the computed GVF has little disturbance region. Compared with the traditional GVF, this model can improve the disturbance-resisting capability, detecting precision and robustness. The motion target detection in image sequence can be realized properly by this method.
作者 田晓东 刘忠
出处 《测试技术学报》 2006年第6期534-538,共5页 Journal of Test and Measurement Technology
关键词 动目标检测 梯度向量流 形变模型 图像序列 目标跟踪 detection of motion target gradient vector flow Snake model image sequence target tracking
  • 相关文献

参考文献7

  • 1李岚,邓峰,彭海良.合成孔径雷达图像的恒虚警率目标检测[J].华北工学院测试技术学报,2002,16(1):9-13. 被引量:8
  • 2Lane D M, Chantler M J, Dai D. Robust tracking of multiple objects in sector-scan sonar image sequences using optical flow motion estimation[J]. IEEE Journal of oceanic engineering, 1998, 23(1) : 31-46.
  • 3姚小虹,赵亦工.基于Snake模型的快速目标检测算法的研究与仿真[J].计算机仿真,2004,21(11):181-183. 被引量:2
  • 4郭礼华,袁晓彤,李建华.基于直方图的Snake视频对象跟踪算法[J].中国图象图形学报(A辑),2005,10(2):197-202. 被引量:7
  • 5Xu Chenyang, Prince J L. Generalized gradient vector flow external forces for active contours[J]. Signal Processing,1998(17): 131-139.
  • 6Xu Chenyang, Prince J L. Snakes, Shapes, and Gradient vector flow[J]. IEEE transaction on image processing,1998, 7(3): 359-369.
  • 7Yu Zhong, Jain A K, Dubuisson-Jolly M P, Object tracking using deformable templates[J]. IEEE transactions on pattern analysis and machine intelligence, 2000, 22(5): 544-549.

二级参考文献18

  • 1戚飞虎,沈定刚.基于边缘方向信息的主动轮廓算法[J].红外与毫米波学报,1997,16(1):45-50. 被引量:3
  • 2Sethi I K, Jain R. Finding trajectories of feature points in a monocular image sequence [ J ]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 1987,9( 1 ) :56 - 73.
  • 3Crowley J L, Stelmaszyk P, Discours C. Measuring image flow by tracking edge lines [ A ]. In: Proceedings of IEEE Computer Vision and Pattern Recognition[ C ], San Diego, California, 1989:658 -664.
  • 4Kass M, Witkin A, Terzopoulos D. Snakes: active contour models [ A]. In: Proceedings of First Internatianal Conference on Computer Vision [ C ] , London, England, 1987:259 - 268.
  • 5Valette S, Magnin I, Prost R. Active mesh for video segmentation and objects tracking [ A ]. In: International Conference on Image Processing[ C], Thessaloniki, Greece, 2001:77 - 80.
  • 6Amini A A, Weymouth T E, Jain R C. Using dynamic programming for solving variational problems in vision [ J ]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 1990,12 (9) :855 -867.
  • 7Caselles V, Kimel R, Sapiro G. Geodesic active contours [ J ].International Journal of Computer Vision, 1997,22 ( 1 ) :61 - 79.
  • 8Osher S, Sethian J A. Fronts propagating with curvature-dependent speed: algorithms based on Hamilton-Jacobi formulation[ J ]. Journal Computer Physics, 1988,79 ( 1 ): 12 - 49.
  • 9Gastaud M, Barlaud M, Aubert G. Tracking video objects using active contours [ A ]. In: Proceedings of the Workshop on Motion and Video Computing[ C ], Orlando, Florida, 2002:90 - 95.
  • 10Mansouri A R. Region tracking via level set PDEs without motion computation[ J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2002,24 (7) :947 - 961.

共引文献14

同被引文献10

  • 1曹丹华,邹伟,吴裕斌.基于背景图像差分的运动人体检测[J].光电工程,2007,34(6):107-111. 被引量:36
  • 2Gupte S, Masoud O, Martin R F K, et al. Detection and classification of vehicles[J]. IEEE Trans. on Intelligent Transportation Systems, 2002, 3 (1) : 37-47.
  • 3Messelodi S, Modena C M, Segata N, et al. A Kalman Filter Based Background Updating Algorithm Robust to Sharp Illumination Changes[C]. ICIAP 2005, LNCS 3617, Cagliari, Italy, F. Roli and S. Vitulano, 2005: 163-170.
  • 4Stauffer C, Grimson W E L. Adaptive Background Mixture Models for Real-time Tracking[ C]. Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Colorado, Fort Collins, 1999, 2(6) : 246-252.
  • 5Sun Y, Yuan B. Hierarchical GMM to handle sharp changes in moving object Detection[J]. Electronics Letters. 2004, 40 (13) : 801-802.
  • 6Huttenlocher D P, Klanderman G, Rucklidge W J. Comparing images using the Hausdorff distance[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 1993, 15(9): 850-863.
  • 7Sim D G, Kwon O K, Park R H. Object matching algorithm using robust Hausdorff distance measures[J ]. IEEE Transactions on Image Processing, 1999, 8(3) : 425-429.
  • 8包晓敏,汪亚明,郝保明.基于聚类和α-β-γ滤波的运动跟踪[J].测试技术学报,2009,23(4):288-292. 被引量:3
  • 9冀小平,谢克明.基于遗传算法的背景提取算法[J].中北大学学报(自然科学版),2009,30(5):436-438. 被引量:1
  • 10冯慧娜,白艳萍,胡红萍.一种基于颜色和灰度跳变的车牌定位方法[J].测试技术学报,2009,23(6):545-549. 被引量:6

引证文献1

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部