期刊文献+

扑翼节律运动的产生与控制 被引量:4

Generation and Control of Flapping-wing Rhythmic Movement
下载PDF
导出
摘要 根据昆虫扑翼飞行节律运动的原理,设计一个压电驱动的两自由度扑翼机构。在建立扑翼物理模型的基础上,研究了其模态特征,并结合主动控制构建了一个范德波尔(van derPol)类型的自激振动扑翼系统,使扑翼产生稳定的极限环运动。通过研究系统的响应,分析了控制力中各参数变化对系统特性的影响。在此基础上,利用交叉反馈选择出系统的第一阶模态振动,并调节各参数使扑翼飞行器实现不同的飞行模式。 A 2--DOF piezo--actuated flapping mechanism was designed according to the theory of flapping--wing flying rhythmic movement of insects. Based on the physical model of flapping--wing, the modal shapes were studied. A van der Pol type self--excited vibratory system was constructed by active control, and the flapping--wing could generate stable limit--circle movement. Through the research on system responses, the influences of the parameters in the control force on the system characteristics were analyzed. Then the first modal vibration of the system was selected by cross feedback, and the flapping--wing micro air vehicle realized different flying modes by adjusting system parameters.
出处 《中国机械工程》 EI CAS CSCD 北大核心 2006年第22期2411-2415,共5页 China Mechanical Engineering
基金 国家自然科学基金资助项目(50575183)
关键词 扑翼飞行 节律运动 自激振动 运动控制 flapping-- wing flying rhythmic movement self-- excited vibration motion control
  • 相关文献

参考文献6

  • 1Carl R K. Insect Flight Mechanisms: Anatomy and Kinematics[D]. Virginia: University of Virginia,1998.
  • 2Ellington C P, van den Berg C, Willmott A, et al.Leading-edge Vortices in Insect Flight [J]. Nature, 1996,384 : 626-630.
  • 3侯宇,方宗德,刘岚,傅卫平.仿生微扑翼飞行器机构动态分析与工程设计方法[J].航空学报,2005,26(2):173-178. 被引量:26
  • 4侯宇,方宗德,刘岚,傅卫平.仿生微扑翼机构的设计与机电耦合特性研究[J].中国机械工程,2005,16(7):570-573. 被引量:4
  • 5Kyosuke O, Toru O. Self-excited Vibratory System for a Flutter Mechanism[J]. JSME International Journal,Series C,1998,41(3) : 621-629.
  • 6Sudo S, Hashinoto H, Oda F. Motion Analysis of Flying Insects[C]//Japanese Society of Mechanical Engineering. The 73rd JSME Annual Meeting. Tokyo:JSME, 1995 : 46-47.

二级参考文献13

  • 1Kenji S, Isao S. Insect-model Based Micro Robot with Elastic Hinges. Journal of Microelectromech- anical Systems, 1994, 3(1):4~9.
  • 2Fischer M, Giousouf M, Schaepperle J. Electrostatically Deflectable Polysilicon Micro Mirrors-Dynamic Behavior and Comparison with the Results from FEM Modeling with ANSYS. Sensors and Actuators A, 1998,67:89~95.
  • 3Patrick B C, Phyllis R N, Mark L T, et al. Dynamics of Polysilicon Parallel-plate Electrostatic Actuators. Sensors and Actuators A, 1996, 52:216~220.
  • 4Ellington C. The Novel Aerodynamics of Insect Flight: Applications to Micro Air Vehicles. Journal of Experimental Biology, 1999, 202 (23): 3439~3448.
  • 5Isao S, Miura H, Suzuki K. Insect-like Micro Robots with External Skeletons. IEEE Control Systems Magazine, 1993, 2:37~41.
  • 6Micheal J M, Francis M S. Micro air vehicles-toward a new dimension in flight[R]. US DARPA/TTO Report, 1997.
  • 7Ellington C P, van Berg C. Leading-edge vortices in insect flight[J]. Nature, 1996, 384(12):19-26.
  • 8Dickonson M H. Wing rotation and the aerodynamic basis of insect flight[J]. Science, 1999, 284(6):1954-1960.
  • 9Wei S, Berg M, Ljungqvist D. Flapping and flexible wings for biological and micro air vehicles[R]. Progress in Aerospace Sciences, 1999, 35:455-505.
  • 10Shimoyama I, Miura H, Suzuki K. Insect-like micro robots with external skeletons[J]. IEEE Control Systems magazine, 1993,13(2):37-41.

共引文献26

同被引文献50

引证文献4

二级引证文献22

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部