期刊文献+

基于EMD和AR模型的水轮机尾水管动态特征信息提取 被引量:12

EMD and AR Model Based Dynamic Characteristic Extraction of the Draft Tube of Hydraulic Turbines
下载PDF
导出
摘要 提出一种基于经验模态分解(EMD)和自回归(AR)模型的水轮机尾水管动态特征信息提取方法。对经过预处理的信号进行EMD分解,得到包含特征频率的本征模态函数(IMF),对每个IMF建立AR模型,取模型参数作为故障模式识别的特征矢量。以水轮机尾水管压力脉动信号为例,运用此方法进行了尾水管动态特征信息的提取。试验表明,基于EMD和AR模型的特征提取法是故障特征提取的有效方法。 This paper presents a new method for extracting the dynamic characteristics of the draft tube of a hydraulic turbine hased on EMD (empirical mode decomposition) and AR (auto regressive) model, The signals processed in advance are decomposed with EMD, thus the intrinsic mode functions (IMFs) containing characteristic frequencies can be obtained. The AR model can then be developed for every IMF, and the parameters of AR model can be used as the characteristic parameters for fault mode recognition. As an example, the monitoring signals of the pressure fluctuation of the draft tube are processed with the proposed method. It is shown that the method effective for extracting fault information.
出处 《电力系统自动化》 EI CSCD 北大核心 2006年第22期77-80,共4页 Automation of Electric Power Systems
基金 国家自然科学基金重点项目资助(90410019)~~
关键词 水轮机 尾水管 压力脉动 EMD AR模型 特征提取 hydraulic turbine draft tube pressure fluctuation EMD AR model characteristic extraction
  • 相关文献

参考文献12

  • 1桂中华,韩凤琴,张浩.小波包特征熵提取水轮机尾水管动态特性信息[J].电力系统自动化,2004,18(13):77-79. 被引量:18
  • 2桂中华,韩凤琴.小波包-最大熵谱估计及其在水轮机故障诊断中的应用[J].电力系统自动化,2004,28(2):62-66. 被引量:30
  • 3HUANG N E,SHEN Z,LONG S R,et al.The empirical mode decomposition and the Hilbert spectrum for nonlinear and nonstationary time series analysis.Proceedings of the Royal Society of London,Series A,1998,454(4):903-995.
  • 4HUANG N E,SHENG Z,LONG S R,et al.A new view of nonlinear water waves:the Hilbert spectrum.Annual Review of Fluid Mechanics,1999,31(3):417-457.
  • 5HUANG N E,WU M C,LONG S R,et al.A confidence limit for the empirical mode decomposition and Hilbert spectral analysis.Proceedings of the Royal Society of London,Series A,2003,459(2037):2317-2345.
  • 6WU Z,HUANG N E.A study of the characteristics of white noise using the empirical mode decomposition method.Proceedings of the Royal Society of London,Series A,2004,460(2046):1597-1611.
  • 7FLANDRIN P,RILLING G,GONCALVES P.Empirical mode decomposition as a filter bank.IEEE Signal Processing Letters,2004,11(2):112-114.
  • 8GLOERSEN P,HUANG N E.Comparison of interannual intrinsic modes in hemispheric sea ice covers and other geophysical parameter.IEEE Trans on Geoscience and Remote Sensing,2003,41(5):1062-1074.
  • 9李天云,赵妍,李楠.基于EMD的Hilbert变换应用于暂态信号分析[J].电力系统自动化,2005,29(4):49-52. 被引量:77
  • 10钱勇,黄成军,陈陈,江秀臣.基于经验模态分解的局部放电去噪方法[J].电力系统自动化,2005,29(12):53-56. 被引量:36

二级参考文献41

  • 1徐剑,黄成军,金浩,邵震宇.基于小波集合的局部放电信息提取算法[J].电力系统自动化,2004,28(16):36-40. 被引量:15
  • 2L.科恩 白居宪(译).时-频分析:理论与应用[M].西安:西安交通大学出版社,1998..
  • 3KaySM.现代谱估计原理与应用(Modern Spectral Estimation Theory and Application)[M].北京:科学出版社(Beijing:Science Press),1994..
  • 4程正兴(Cheng Zhengxing).小波分析算法与应用(Wavelet Analysis Algorithms and Applications)[M].西安:西安交通大学出版社(Xi''an: Xi''an Jiaotong University Press),1998..
  • 5胡昌华(Hu Changhua).基于Matlab的系统分析与设计--小波分析(Matlab Based System Analysis amp Design Wavelet Analysis)[M].西安:西安电子科技大学出版社(Xi''an:Xidian University Press),1999..
  • 6HUANG N E, SHEN Z, LONG S R et al. The Empirical Mode Decomposition and the Hilbert Spectrum for Nonlinear and Nonstationary Time Series Analysis. Proc Royal Society London A,1998, (454); 903-995.
  • 7Daubechies I. The Wavelet Transforms Time Frequency Localization and Signal Analysis. IEEE Trans on Information Theory, 1990, 36(5): 961-1005
  • 8Mallat S, Hwang W L. Singularity Detection and Processing with Wavelets. IEEE Trans on Information Theory, 1992,38(2): 617-643
  • 9Ohashi H. Vibration and oscillation of hydraulic machinery[ M ].Aldershot : Avebury Technical, 1991.
  • 10Huang N E, Shell Z, Long S R et al. The empirical mode decomposition and the Hilbert spectrmn for nonlinear and nonstationary time series analysis[ J ]. Proceedings of the Royal Society of London, Series A, 1998, 454 : 903 - 995.

共引文献179

同被引文献107

引证文献12

二级引证文献78

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部