期刊文献+

基于粒子群算法的并联机器人运动学正解研究 被引量:2

Study on the direct kinematics of parallel manipulators based on particle swarm optimization
下载PDF
导出
摘要 并联机器人运动学正解问题由于涉及到求解非线性方程组问题而不易解决。在对粒子群算法研究的基础上,对其进行改进,以提高全局搜索能力。同时结合外点罚函数法,对并联机器人运动学正解问题重新进行建模,以便于使用粒子群算法进行求解。结合二者形成新的正解求解方法。最后使用该方法,以一台并联机器人为对象进行研究,获得了其运动学正解。 It' s difficult to solve the direct kinematics of a parallel manipulator (PM), which will deal with nonlinear function set. The panicle swarm optimization (PSO) algorithm is improved to get better global search ability. And the model about the PM' s direct kinematics is rebuilt with the exterior point penalty function method so as to adapt to the PSO. So a new method to solve the direct kinematics problem is obtained based on them. Finally a PM is introduced as an instance, and the direct kinematics problem of it is solved with the method.
出处 《机械设计与制造》 北大核心 2006年第11期116-118,共3页 Machinery Design & Manufacture
基金 国家自然科学基金(50475055)
关键词 粒子群算法 运动学正解 并联机器人 罚函数 Particle swarm optimization Direct kinematics Parallel manipulators penalty function
  • 相关文献

参考文献7

  • 1Lun-wen Tsal. Robot analysis[M]. John Wiley & .Sons, Inc., 1999.
  • 2J, P, Merlet, "Les robots paralleles"[M].France: Hermes, 1997.
  • 3汪家芸.飞行器总体优化设计[M].北京:航空部教材出版社,1986.
  • 4K. E. Parsopoulos, M. N. Vrahatis. Becent approaches to global optimization problems through Particle Swarm Optimization [J]. Natural -computing, 2002, 1:235 - 306.
  • 5王俊伟,汪定伟.粒子群算法中惯性权重的实验与分析[J].系统工程学报,2005,20(2):194-198. 被引量:85
  • 6Clerc M. The swarm and the queen: towards a deterministic and adaptive particle swarm optimization [A]. IEEE Proc. 1999 congrvss on evolu tionary computation [C]. Washington DC, USA: 1999, 1951-1957.
  • 7赵辉.五自由度五轴并联机床关键技术研究:[D].北京:北京航空航天大学出版社.2004.

二级参考文献8

  • 1Clerc M, Kennedy J. The particle swarm: Explosion, stability, and convergence in a multi-dimensional complex space[J]. IEEE Transactions on Evolutionary Computation, 2002, 6( 1 ) : 58-73.
  • 2Trelea I. The particle swarm optimization algorithm: Convergence analysis and parameter selection[ J ]. Information Processing Letters, 2003, 85(6):317-325.
  • 3Eberhart R, Shi Y. Comparing Inertia Weigthts and Constriction Factors in Particle Swarm Optimization[ C]. IEEE Congress on Evolutionary Computation, Piscataway: IEEE Service Center, 2000. 84-88.
  • 4Kennedy J, Eberhart R. Particle Swarm Optimization[ C]. IEEE Int. Conf. on Neural Networks, Piscataway: IEEE Service Center,1995. 1942-1948.
  • 5Eberhart R, Kennedy J. A New Optimizer Using Particle Swarm Theory[C]. Proc. on Int. Symposium on Micro Machine and Human Science, Piscataway: IEEE Service Center, 1995. 39--43.
  • 6Kennedy J. The Particle Swarm: Social Adaptation of Knowledge[ CI. IEEE Int. Conf. on Evolutionary Computation, Piscataway:IEEE Service Center, 1997. 303-308.
  • 7Shi Y, Eberhart R. A Modified Particle Swarm Optimizer[Cl. IEEE Int. Conf. on Evolutionary Computation, Piscataway: NJ,IEEE Service Center, 1998. 69-73.
  • 8谢晓锋,张文俊,杨之廉.微粒群算法综述[J].控制与决策,2003,18(2):129-134. 被引量:422

共引文献85

同被引文献13

引证文献2

二级引证文献8

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部