期刊文献+

电化学电容-电压法表征等离子体掺杂超浅结

Electrochemical Capacitance-Voltage Characterization of Plasma-Doped Ultra-Shallow Junctions
下载PDF
导出
摘要 采用电化学电容-电压(ECV)法对等离子体掺杂制备的Si超浅p+n结进行了电学表征.通过对超浅p+n结样品ECV测试和二次离子质谱(SIMS)测试及比较,发现用ECV测试获得的p+层杂质浓度分布及结深与SIMS测试结果具有良好的一致性,但ECV测试下层轻掺杂n型衬底杂质浓度受上层高浓度掺杂影响很大.ECV测试具有良好的可控性与重复性.对不同退火方法等离子体掺杂形成的超浅结样品的ECV系列测试结果表明,ECV能可靠地表征结深达10nm,杂质浓度达1021cm-3量级的Si超浅结样品,其深度分辨率可达纳米量级,它有望在亚65nm节点CMOS器件的超浅结表征中获得应用. Ultra-shallow Si p^+ n junctions formed by plasma doping are characterized by electrochemical capacitance-voltage (ECV). By comparing ECV results with secondary ion mass spectroscopy(SIMS) results,it is found that the dopant concentration profiles in the heavily-doped p^+ layer as well as junction depths measured by ECV are in good agreement with those measured by SIMS. But the ECV measurement of the dopant concentration in the lightly doped n-type substrate underneath is significantly influenced by the upper heavily-doped layer. The ECV technique is also easy to control and reproduce. The ECV results of ultra-shallow junctions (USJ) formed by plasma doping followed by different annealing processes show that ECV is capable of reliably characterizing a Si USJ with a junction depth as low as 10nm, and dopant concentration up to 10^21 cm^-3. Its depth resolution can reach as low as lnm. Therefore it shows great potential in applications for characterizing USJ in sub65nm technology node CMOS devices.
出处 《Journal of Semiconductors》 EI CAS CSCD 北大核心 2006年第11期1966-1969,共4页 半导体学报(英文版)
关键词 电化学电容-电压 超浅结 杂质浓度 electrochemical capacitance-voltage ultra-shallow junction dopant concentration
  • 相关文献

参考文献17

  • 1http://www.itrs.net/Common/2005ITRS/Home2005.htm
  • 2Chu P K,Felch S B,Kellerman P,et al.Plasma doping:progress and potential.Solid State Technol,1999,42 (9):55
  • 3Skorupa W,Gebel T,Yankov R A,et al.Advanced thermal processing of ultrashallow implanted junctions using flash lamp annealing.J Electrochem Soc,2005,152:G436
  • 4Baek S,Heo S,Choi H,et al.Characteristics of heavily doped p+/n ultrashallow junction prepared by plasma doping and laser annealing.J Vac Sci Technol B,2005,23:257
  • 5Schroder D K.Semiconductor material and device characterization.New York:John Wiley & Sons Inc,1990:23,41,55,85,203
  • 6Alzanki T,Gwilliam R,Emerson N,et al.Concentration profiles of antimony-doped shallow layers in silicon.Semicond Sci Technol,2004,19:728
  • 7Alzanki T,Gwilliam R,Emerson N,et al.Differential Hall effect profiling of ultrashallow junctions in Sb implanted silicon.Appl Phys Lett,2004,85:1979
  • 8Yamaki Y,Ozaki D,Inada T.Electrical profiles of ultrashallow p+ layers formed in Si by low-energy BF+2 ion implantation.J Appl Phys,2005,97:083708
  • 9Blood P.Capacitance-voltage profiling and the characterisation of Ⅲ-Ⅴ semiconductors using electrolyte barriers.Semicond Sci Technol,1986,1:7
  • 10Casel A,Jorke H.Comparison of carrier profiles from spreading resistance analysis and from model calculations for abrupt doping structures.Appl Phys Lett,1987,50:989

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部