期刊文献+

基于粗糙集理论的船舶“三漏”故障诊断 被引量:1

Rough Set Theory applied to diagnose the leakage of water,gas and oil
下载PDF
导出
摘要 故障诊断是与有效决策密切相关的复杂问题。粗糙集理论可以有效地分析、处理不完备信息。应用粗糙集理论挖掘工具,对故障信息系统“约简”,在故障诊断系统中提取最小诊断条件集,可为设备维护人员提供快捷、有效的诊断依据。对“三漏”问题中机械装配不当故障诊断作了实例分析。 Fault diagnosis is a complex and difficult problem that concerns effective decision-making. Incomplete information can be effectively analyzed and processed by Rough Set Theory. As a novel tool for knowledge extraction, the Rough Set Theory can supply reliable data to maintenance technicians for rapid and effective fault diagnosis by the "reduction" of information system and extracting a set of minimal diagnostic conditions in the fault diagnosis system. An example of the leakage of water, gas and oil caused by inappropriate assembly is analyzed.
作者 刘军 葛彤
出处 《海洋工程》 CSCD 北大核心 2006年第4期112-115,共4页 The Ocean Engineering
基金 国家自然科学基金资助项目(60373078) 浙江省教育厅资助项目(20050113)
关键词 粗糙集 不完备信息系统 三漏 机械密封装配 rough set incomplete information system leakage of water, gas and oil mechanical seal assembly
  • 相关文献

参考文献7

  • 1Qinghui Wang,Jing Rong Li.A rough set-based fault ranking prototype system for fault diagnosis[J].Engineering Applications of Artificial Intelligence,2004,17:909-917.
  • 2Pawlak Z.Roush sets[J].International Journals of Information and Computer Sciences,1982,11:348-356.
  • 3Hashmi R R,Le Blanc L A,Rucks C T,et al.A hybrid intelligent system for predicting bank holding structures[J].European Journal of Operational Research,1998,109:390-402.
  • 4Khoo L P,Tor S B,zhai L Y.A rough-set based approach for classification and rule induction[J].International Journal of Advanced Manufacturing Tchnology,1999,15:438-444.
  • 5Tsumoto S.Knowlideg discovery in medical databases based on rough sets and attribute-oriented generalisation[A].Proceedings of IEEE World Conference on Fuzzy Systems[C].1998.1296-1301.
  • 6李千目,戚湧,张宏,刘凤玉.基于粗糙集神经网络的网络故障诊断新方法[J].计算机研究与发展,2004,41(10):1696-1702. 被引量:28
  • 7张文修 吴伟志 梁吉业.粗糙集理论与方法[M].北京:科学出版社,2003.107-112.

二级参考文献8

  • 1D Gavalas, D Greenwood, M Ghanbari, et al. Advanced network monitoring applications based on mobile/intelligent agent technology. Computer Communications, 2002, 23(8): 720~730
  • 2Basseville M, Nikiforov I V. Detection of Abrupt ChangesTheory and Application. New Jersey: Prentice-Hall Englewood Cliffs, 1993
  • 3Rolf Iserman. Process fault detection based on modeling and estimation method-A survey. Automatica, 1999, 29(4): 815~835
  • 4R Tagliaferri, A Eleuteri, M Meneganti, et al. Fuzzy min-max neural network: From classification to regression. Soft Computing, 2001, 5(1): 69~76
  • 5Phillip Bullell, Dave Inman. An expert system for the analysis of faults in an electricity supply network: Problems and achievements. Computer in Industry, 1998, 37(5): 113~123
  • 6Raghunathan Rengaswamy, Venkat Venkatasubramanian. A fast training neural network and its updating for incipient fault detection and diagnosis. Computer and Chemical Engineering,2000, 24(2): 431~437
  • 7E N Skoundrianos, S G Tzafestas. Fault diagnosis via local neural networks. Mathematics and Computers in Simulation, 2002, 60(3-5): 169~180
  • 8张文修,米据生,吴伟志.不协调目标信息系统的知识约简[J].计算机学报,2003,26(1):12-18. 被引量:190

共引文献130

同被引文献9

引证文献1

二级引证文献4

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部