期刊文献+

基于案例和规则推理的贝叶斯网建模 被引量:5

Bayesian network modeling based on CBR and RBR
下载PDF
导出
摘要 正确、高效地针对问题建立模型是应用贝叶斯网的关键,而从数据中学习贝叶斯网往往因为搜索空间庞大而效率低下.提出基于案例和规则推理的建模方法,建立领域知识库,使用框架和一阶概率逻辑表示贝叶斯网,当面对新的问题时,使用相似度和偏离度两个指标进行案例匹配,对选中的案例使用组合和剪枝技术修正,得到新问题的求解模型.整个过程以案例推理为主,并用规则推理辅助.这种方法能够复用历史案例,提高贝叶斯网建模效率. The key of using Bayesian network is to correctly and efficiently construct models for problems. But, learning Bayesian network from data may be time expensive because of huge search space. In this paper, a modeling method based on case-based reasoning and rule-based reasoning is proposed. We build a domain knowledge base and represent Bayesian networks by frame and first-order probability logic. When facing a new problem, we use similarity ratio and difference ratio to match cases, and then combine and prune candidate cases to form a new model. In the whole process, case-based reasoning is the main technique, and rule-based reasoning plays an assistant role. This method directly reuses historical cases so as to improve Bayesian network modeling efficiency.
出处 《哈尔滨工业大学学报》 EI CAS CSCD 北大核心 2006年第10期1644-1648,共5页 Journal of Harbin Institute of Technology
基金 国家自然科学基金资助项目(70471046) 教育部博士点基金资助项目(20040359004)
关键词 贝叶斯网 案例推理 知识库 规则推理 Bayesian network case-based reasoning knowledge base rule-based reasoning
  • 相关文献

参考文献13

  • 1HECKEMAN D,GEIGER D,CHICKERING D.Learning Bayesian networks:The combination of knowledge and statistical data[J].Machine Learning,1995,20 (3):197 -234.
  • 2COOPER G,HERSKOVITS E.A Bayesian method for the induction of probabilistic networks from data[J].Machine Learning,1992,122 (9):309-347.
  • 3陆汝钤.世纪之交的知识工程与知识科学[M].北京:清华大学出版社,2001..
  • 4WELLNAM M P,BREESE J S,GOLDMAN R P.From knowledge bases to decision models[J].Knowledge Engineering Review,1992,7 (1):35-53.
  • 5PRADHAN M,PROVAN,G,MIDDLETON B,et al.Knowledge engineering for large belief networks[A].Proceedings of the Tenth Annual Conference on Uncertainty in Artificial Intelligence[C].San Mateo,CA:Morgan Kaufmann,1994.
  • 6杨善林 倪志伟.机器学习与智能决策知识系统[M].北京:科学出版社,2004-05..
  • 7倪志伟 ,Yun Yang ,杨善林 ,何建民 .集成范例推理系统的研究[J].系统仿真学报,2004,16(4):803-806. 被引量:3
  • 8KOLLER D,PFEFFER A.Learning probabilities for noisy first-order rules[A].Proceedings of the Fifteenth International Joint Conference on Artificial Intelligence[C].Nagoya:Morgan Kaufmann,1997.
  • 9Halpern.An analysis of first-order logics of probability[J].Artificial Intelligence,1991,46:311-350.
  • 10HADDAWY P.Generating Bayesian networks from probability logic knowledge bases[A].Proceedings of the Tenth Conference on Uncertainty in Artificial Intelligence[C].Seattle:Morgan Kaufmann,1994.

二级参考文献16

  • 1[1]Aha D W,Watson I.Case-based reasoning research and development [A].Proceedings of ICCBR'2001[C],Springer,2001.
  • 2[2]Myllymaki P,Tirri H.Massively parallel case-based reasoning with probabilistic similarity metrics [A].In:Proceedings of the First European Workshop on CBR [C],Springer,November,1993,145-154.
  • 3[3]Ni Zhiwei,Lu Yijuan,Li Longshu,et al.A neural network case- based reasoning and its application [A].Proceedings of 2002 International Conference on Machine Learning and Cybernetics [C],Beijing,China,November,2002,529-532.
  • 4[4]Lin Chuang,et al.Logical inference of horn clauses in Petri net models [J].IEEE Trans.on Knowledge and Data Engineering,1993,5(3),416-425.
  • 5[5]Rissland E L,Skalak D B.CABARET:rule integration in a hybrid architecture [J].International Journal of Man-Machine studies,1991,34:839-887.
  • 6[6]Hammond K J.Explaining and repairing plans that fails [J].Artificial Intelligence,1988,45:173-228.
  • 7[7]Golding A R,Renbloom P S.Improving rule-based systems through case-based reasoning [A].Proceedings of AAAI'91 [C],MIT Press,1991,22-27.
  • 8[8]Aamodt A.A knowledge-intensive integrated approach to problem solving and sustained learning [M].Doctoral Dissertation,University of Trondheim,1991.
  • 9[9]Malek M,V Rialle.A case-based reasoning system applied to neuropathy diagnosis [A].In:Second European Workshop,Proceedings of EWCBR'94,Letures Notes in computer science [C].Springer Verlag,1994,329-336.
  • 10[10]Bareiss E R,Wier C C.Protos:An exemplar-based learning apprentice [A].Proc.4th Int.Workshop on machine learning [C],Irvine,California,1987.

共引文献55

同被引文献44

引证文献5

二级引证文献19

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部