摘要
基于视觉模型而建立的神经认知机能正确识别具有变形、位移和缩放的输入模式.研究表明,选择度参数直接影响着神经认知机的识别能力.设计了一个目标函数,通过对该函数的优化能够得到最佳的选择度.这是一种简单而有效的方法.经该方法调整后,可使各特征选择平面对不同训练样本的响应达到均匀一致,从而提高整个系统的识别能力.对于0-9十个手写阿拉伯数字的仿真结果表明,该方法可有效改善神经认知机的性能.
The neocognitron, which is proposed based on the model of biological vision, has been acclaimed as a shift and distortion tolerant character recognition system. Unfortunately, studies show that the performance of the neocognitron is affected greatly by the value of its selectivity. The neocognitron has a poor recognition rate if the value of selective is not reasonable. A genetic algorithm based method for adjusting necognitron' s selectivity is proposed in this paper. By using the proposed method, the responses of S - plane are uniform. The proposed method is tested on 10 digits, and the simulation results show that it is capable of improving the recognition rate of the neocognitron.
出处
《哈尔滨工业大学学报》
EI
CAS
CSCD
北大核心
2006年第10期1665-1668,共4页
Journal of Harbin Institute of Technology
关键词
神经认知机
选择度
遗传算法
neocognitron
selectivity
genetic algorithm