期刊文献+

基于遗传算法的神经认知机选择度调整方法

A genetic algorithm based method for adjusting selectivity of the neocognitron
下载PDF
导出
摘要 基于视觉模型而建立的神经认知机能正确识别具有变形、位移和缩放的输入模式.研究表明,选择度参数直接影响着神经认知机的识别能力.设计了一个目标函数,通过对该函数的优化能够得到最佳的选择度.这是一种简单而有效的方法.经该方法调整后,可使各特征选择平面对不同训练样本的响应达到均匀一致,从而提高整个系统的识别能力.对于0-9十个手写阿拉伯数字的仿真结果表明,该方法可有效改善神经认知机的性能. The neocognitron, which is proposed based on the model of biological vision, has been acclaimed as a shift and distortion tolerant character recognition system. Unfortunately, studies show that the performance of the neocognitron is affected greatly by the value of its selectivity. The neocognitron has a poor recognition rate if the value of selective is not reasonable. A genetic algorithm based method for adjusting necognitron' s selectivity is proposed in this paper. By using the proposed method, the responses of S - plane are uniform. The proposed method is tested on 10 digits, and the simulation results show that it is capable of improving the recognition rate of the neocognitron.
出处 《哈尔滨工业大学学报》 EI CAS CSCD 北大核心 2006年第10期1665-1668,共4页 Journal of Harbin Institute of Technology
关键词 神经认知机 选择度 遗传算法 neocognitron selectivity genetic algorithm
  • 相关文献

参考文献9

  • 1FUKUSHIMA K,WAKE N.Handwritten alphanumeric character recognition by the neocognitron[J].IEEE Transations on Neural Networks,1991,2 (3):355 -365.
  • 2YEUNG D S,CHENG Y T.Neocognitron based handwriting recognition system performance tuning using Genetic Algorithm[J].IEEE International Conference on Systems,Man,and Cybernetics,1998,4228-4233.
  • 3FUKUSHIMA K,TANIGAWA M.Use of different threshold in learning and recognition[J].Neurocomputing,1996,11:1-17
  • 4SHI D,DONG C,YEUNG D S.Neocognitron's parameter tuning by genetic algorithms[J].International Journal of Neural Systems,1999,9(6):497 -509.
  • 5DAVID R L,DOWN T,TSOI A C.An Evaluation of the neocognitron[J].IEEE Transactions on Neural Networks,1997,8:1098-1105.
  • 6TEO M Y,SIM S K.Training the neocognitron network using design of experiments[J].Artificial Intelligence in Engineering,1995,9:85-94.
  • 7HILDEBRANDT T H.Optimal training of thresholded linear correlation classifiers[J].IEEE transations on Neural Networks,1991,2(6):577 -588.
  • 8靳蕃.神经智能基础-原理方法[M].成都:西南交通大学出版社,2001.
  • 9吴镇,孙国正.遗传算法中的加速进化技术[J].同济大学学报(自然科学版),2001,29(12):1391-1394. 被引量:3

二级参考文献6

  • 1盛骤 谢世千.概率论与数理统计(第2版)[M].北京:高等教育出版社,1989.59.
  • 2孙国正.优化设计与应用[M].人民交通出版社,1992.77-79.
  • 3孙国正,优化设计及应用,1992年,17页
  • 4盛骤,概率论与数理统计(第2版),1989年,189页
  • 5吴少岩,张青富,陈火旺.基于家族优生学的进化算法[J].软件学报,1997,8(2):137-144. 被引量:38
  • 6刘洪杰,王秀峰,王治宝.遗传多峰搜索[J].系统工程学报,2000,15(4):321-326. 被引量:7

共引文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部