期刊文献+

定常粘弹性流体的最小二乘混合有限元 被引量:3

Least-Squares Mixed Finite Element of Steady State Viscoelastic Fluid Flow
下载PDF
导出
摘要 针对于定常的服从OldroydB型本构律的粘弹性流体流动建立了一种最小二乘混合有限元方法.应力、速度分别采用不连续分片k多次项式pk,连续分片k+1次多项式pk+1(k>0).分析了逼近问题的解的存在性并给出了逼近解的误差估计. In the paper, we discuss the method of least - squares mixed finite element for steady state viscoelastic fluid flow. The approximate stress and velocity are respectively Pk discontinuous and Pk+1 continuous. Existence and error estimates of the approximate solution are established.
出处 《怀化学院学报》 2006年第8期17-21,共5页 Journal of Huaihua University
基金 湖南教育厅青年项目资助(项目编号:05B022).
关键词 粘弹性流体流动 最小二乘混合有限元 一致三角剖分 viscoelastic fluid flow least- squares mixed finite element uniform triangrlar partitions
  • 相关文献

参考文献1

  • 1J. Baranger,D. Sandri. Finite element approximation of viscoelastic fluid flow: Existence of approximate solutions and error bounds[J] 1992,Numerische Mathematik(1):13~27

同被引文献18

  • 1郭玲,陈焕贞.Sobolev方程的H^1-Galerkin混合有限元方法[J].系统科学与数学,2006,26(3):301-314. 被引量:54
  • 2张宏伟,鲁祖亮.黏弹性流体流动的混合有限元方法[J].长沙电力学院学报(自然科学版),2006,21(4):72-77. 被引量:7
  • 3王焕,袁益让.可压可溶两相驱动问题的迎风混合元方法[J].数学物理学报(A辑),2007,27(1):45-56. 被引量:1
  • 4张宏伟,鲁祖亮.黏弹性流体流动的V循环多层网格法[J].延安大学学报(自然科学版),2007,26(2):9-14. 被引量:1
  • 5BARENBLATT G I, ZHELTOV I P, KOCHINA I N. Basic concepts in the theory of seepage of homogenous liquids in fis- sured rock[J]. Appl Math Mech, 1960, 24:1286-1303.
  • 6TING T W. A cooling process according to two-temperature theory of heat conduction[J]. Math Anal Appl, 1974(45) :23- 31.
  • 7DOUGLAS N Arnold, JIM DOUGLAS, VIDAR Thom6e. Superconvergence of a finite element approximation to the solution of a sobolev equation in a single space variable[J].Mathematics of Computation, 1981, 36:53-63.
  • 8SUN Tongjun, YANG Danping. The finite difference streamline diffusion methods for sobolev equation with convection-domi- nated term [ J ]. Applied Mathematics and Computation, 2002, 125 : 325-345.
  • 9SONG Huailing, YUAN Yirang. An upwind-mixed method on changing meshes for two-phase miscible flow in porous media [ J]. Applied Numerical Mathematics, 2008, 58:815-826.
  • 10ARBOGAST T, WHEELER M, YOTOV I. Mixed finite elements for elliptic problems with tensor coefficients as cell-cen- tered finite differences[ J]. SIAM J Numer Anal, 1997, 34:828-852.

引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部