期刊文献+

基于动态矩阵预测的网页实时推荐研究 被引量:1

Study Of Real-Time Web Pages Recommendation Based On Dynamic Matrix Prediction
下载PDF
导出
摘要 通过对Web日志的预处理,构建动态矩阵,该矩阵能够反映用户访问路径的先后顺序,利用相似度计算进行网页推荐。提出的动态矩阵预测算法具有较快的响应速度,可以满足实时页面推荐的需要,同时该算法无需事先训练,还可以对动态矩阵进行增量更新,提高了预测性能。 Dynamic matrix is firstly constructed by means of preproeessing to web log and it can represent the order Of user's browsing path on web. Whereafter, desirable web pages are recommended by calculation of similarity between sessions. The algorithm possesses preferable speed of response to satisfy the need of real time web page recommendation and also can be executed without training in advance. Meanwhile , the algorithm can implement incrementally update of dynamic matrix , the performance of recommendation can be improved growingly.
作者 亓俊红
出处 《微计算机应用》 2006年第6期760-763,共4页 Microcomputer Applications
关键词 WEB日志 数据预处理 动态矩阵 网页推荐 Web log , data preprocessing , dynamic matrix , page recommendation
  • 相关文献

参考文献6

  • 1Perkowitz M, Etzlonl O. Towards Adaptive Web Sites :Conceptual Framework and Case Study Artificial Intelligence , 2000 , 118 (1 -- 2) :245-275.
  • 2Mobasher B , Dai. H , I.uo T , etal. Effective Personalization Based on Association Rule Discovery from Web Usage Data. Proc, of ACM Workshop on Web Information and Data Management (WIDM) [C] 2001. 103-112.
  • 3岳训,苗良,巩君华,岳荣.基于矩阵聚类的电子商务网站个性化推荐系统[J].小型微型计算机系统,2003,24(11):1922-1926. 被引量:8
  • 4鲍玉斌,王大玲,于戈.关联规则和聚类分析在个性化推荐中的应用[J].东北大学学报(自然科学版),2003,24(12):1149-1152. 被引量:18
  • 5Cooley R, Mobasher B, Srivastava J. Data preparation for mining World Wide Web browsing patterns[J]. Journal of Knowledge and Information Systems, 1999,1 (1):5-32.
  • 6Mobasher B , Dai H. Improving the effectiveness of collaborative filtering on anonymous web usage data. Anand S S ed. Proc of the IJCAI2001 Workshop on Intelligent Techniques f or Web Personalization (ITWP01). Berlin :Springer2Verlag , 2001. 49-56

二级参考文献20

  • 1http : //robotics. stanford. edu/-ronnyk/WEBKDD2000.
  • 2Agrawal R, SRIKANT R. Fast algorithms for mining association rules[C]. Proc 20th VLDB Conf,1994. 487-499.
  • 3Agrawal R. SRIKANT R. Mining sequential patterns[C]. Proc intl Conf. Data Engineering(1995).
  • 4Igillsus D and Pazzani M J. Learning collaborative information fillers[C]. In Proc . Fifteenth International Conference on Machine Learning . Madism Wisconsin. 1998.
  • 5Kotlstan J, Miller B, Maltz D,Herlocker J, Gordon L and Riedl J. (1997). GroupLens: applying collaborative filtering to usenet news[J]. Communications of the ACM,1997,40(3):77-78.
  • 6Badrul M,Sarwar, George Karypis,Joseph A Konstan and John T Riedl. Application of d mensionality reduction in recommender system a case study[M]. WEBKDD, 2000.
  • 7Masseglia F, Poncelet P, Teisseire M. Using data mining techniques on web access log-s to dynamically improve hypertext structure[R]. NEC Research Institute, 1999.
  • 8Robert Cooley .Bamshad Mobasher and Jaideep Srivastava. Data preparatlon for mining world wide web browsing patterns [C]. In: International Conference on Tools with Artificial Intelligence.1999.
  • 9Robert Cooley .Bamshad Mobasher.and jaideep Srivastava. Web mining : information and pattern discovery on the World Wide Web[C]. In: International Conference on Tools with Ardlicial Intelligence. Newport Beach.CA. 1997.558-567.
  • 10Aggarwal C, Yu P. Data mining techniques for personalization[J]. IEEE Data Engineering Bulletin, 2000,23(1):4-9.

共引文献23

同被引文献6

  • 1I. Androutsopoulos , G. Paliouras and E. Michelakis. Learning to Filter Unsolicited Commercial E2Mail. Technical report 2004P2, NCSR“Demokritos”, 2004.
  • 2H. Drucker , D. Wu , and V. N. Vapnik , Support Vector Machines for Spam Categorization. IEEE Transactionson Neural Net-works , 1999,20(5) : 1048 - 1054.
  • 3P. Resnick and H. Varian. Recommender Systems. Communications of the ACM, 1997,40(3) :56-58.
  • 4A. Jφsang, R. Ismail, and C. Boyd, A survey of trust and reputation for online service provision. Decision Support Systems, 2004.
  • 5Ratnasamy S. , Handley M. , Karp R. , and Shenker S.. Application leVel multicast using content - addressable networks. In : Proceedings of 3rd International Workshop on Networked Group Communication, London, England, November 2001.
  • 6D. M. Pennock, G. W. Flake, S. Lawrence, C. L. Giles, and E. J. Glover. Winners dont take all: Characterizing the competition for links on the Web. Proceedings of the National Academy of Sciences, 2002.

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部