期刊文献+

基于BP神经网络的巷道围岩稳定性分级识别 被引量:1

Identify the stability classification of the surrounding rock through BP neural network in the mine tunnel
下载PDF
导出
摘要 矿山围岩稳定性分级是矿山工程的基本参数,为矿山支护设计提供基础数据,利用BP神经网络进行围岩稳定性分级识别,有利于真实地刻画矿山围岩稳定性分级与其影响因素之间的非线性关系。本文研究了BP神经网络的工作原理及其改进,分析了某矿巷道围岩稳定性影响因素,确定建立了围岩稳定性分级的神经网络识别模型,并利用该模型对某矿山围岩分级进行了拟合,取得了很好的效果。 To the stability classification of the surrounding rock, it is base parameter to the designing support in the mine. It is avail to reflect the in-linear relation between the stability classification and the influent factor, using the BP neural network model. In this paper, studied the work principia and the modiled method of the BP neural network, the influence factors are analyzed to confirm the index of classification. The model of the BP (modified BP) neural network has built to identify the classified results, the model has been used in the mine tunnel, tha simulate results and the facts are very approximate.
出处 《矿业工程》 CAS 2006年第6期14-16,共3页 Mining Engineering
关键词 围岩稳定性分级 影响因素 分类指标 BP神经网络 the stability classification of the surrounding rock the influent factor the index of classification the BP neural network
  • 相关文献

参考文献2

二级参考文献2

共引文献3

同被引文献12

引证文献1

二级引证文献8

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部