期刊文献+

ECT图像重建正则化参数选取新方法 被引量:2

New parameter selecting method of regularization for ECT image reconstruction
下载PDF
导出
摘要 电容层析成像图像重建是一不适定反问题。此种情况下,仅使用最小二乘法不能保证获得满意的介质分布图像重建结果,因此广泛使用TIkhonov正则化算法来产生适当的解。正则化参数的合适选取对图像重建至关重要,其对重建质量和计算时间都有影响。本文提出了一种基于最平坦斜率的Tikhonov正则化参数选择方法,并针对2种典型介质分布,将基于此方法计算的正则化参数同L-曲线法在电容测量数据无噪声和施加噪声情况下的图像重建结果进行了比较。 Image reconstruction for electrical capacitance tomography is very often ill posed. In such cases, using only simple least-squares method can not ensure a successful image reconstruction of media distribution. Therefore, Tikhonov regularization is widely employed to produce proper solutions. Correctly selecting regularization parameters is crucial for image reconstruction, which affects both quality and computing cost of the reconstruction. In this paper, a new parameter selecting method of Tikhonov regularization based on the flattest slope method is presented. The regularization parameters for two typical media distributions were calculated using both the proposed flattest slope method and the L-curve approach. The image reconstruction results for noiseless capacitance measurement data and for the data with noise added are given for comparison.
出处 《仪器仪表学报》 EI CAS CSCD 北大核心 2006年第11期1478-1482,共5页 Chinese Journal of Scientific Instrument
基金 国家自然科学基金(60374052)资助项目。
关键词 电容层析成像 图像重建 不适定反问题 TIKHONOV正则化 L-曲线 electrical capacitance tomography image reconstruction ill-posed inverse problem Tikhonov regularization L-curve
  • 相关文献

参考文献10

  • 1XIE C G, PLASKOWSKI A, BECK M S. 8-electrode capacitance system for two-component flow identification [J]. Part 1: Tomographic flow imaging, IEE Proceedings A, 1989, 136(4):173-183.
  • 2XIE C G, HUANG S M. Electrical capacitance tomography for flow imaging, system model for development of image reconstruction algorithms and design of primary sensors [J]. IEE Proc.-G, 1992, 139(1):89-98.
  • 3POLYDORIDES N. Image reconstruction algorithms for soft-field tomography[D]. UK. University of Manchester Institute of Science and Technology, 2002.
  • 4YANG W Q, PENG L. Image reconstruction algorithms for electrical capacitance tomography [J].Measurement Science &Technology, 2003, 14. R1-13.
  • 5PENG L H, YAO D Y, ZHANG B F. Regularization based image reconstruction for electrical capacitance tomography [A]. Proc: 2nd World Congress on In dustrial Process Tomography [C], Hannover, Germany, 2001, 57-66.
  • 6GOLUB G H, HEATH M T, WAHBA G. Generalized cross-validation as a method for choosing a good ridge parameter [J]. Technometrics 21, 1979, 21(2):215-223.
  • 7HANSEN P C. Analysis of discrete ill-posed problems by means of the L-curve [J]. SIAM Review, 1992, 34(4), 561-580.
  • 8HANSEN P C, O'LEARY D P. The Use of the Lcurve in the regularization of discrete ill-bposed problems [J]. SIAM J. Sci. Comput., 1993, 14(6):1487-1503.
  • 9HANSEN P C. Truncated singular value decomposition solutions to discrete ill-bposed problems with ill-determined numerical rank [J]. SIAM J. Sci. Statist.Comput. , 1990, 11(3): 503-518.
  • 10WU L M A parameter choice method for tikhonov regularization [J]. Electronic Transactions on Numerical Analysis, 2003, 16.107-128.

同被引文献19

  • 1KHOR W C, BIALKOWSKI M E, ABBOSH A, et al. An ultra wideband microwave imaging system for breast cancer detection [J].IEICE Trans on Communications, 2007, E90-B(9):2376-2381.
  • 2SEMENOV S. Microwave tomography: review of the progress towards clinical applications [J].Philosophical Trans of the Royal Society, 2009,367(1900):3021-3042.
  • 3JOINES W T, ZHANG Yang, LI Chen-xing, et al. The measured electrical pro-perties of normal and malignant human tissues from 50 to 900 MHz [J].Medical Physics, 1994, 21(4):547-550.
  • 4LAZEBNIK M, POPOVIC D, MCCARTNEY L, et al. A large-scale study of the ultra-wide band microwave dielectric properties of normal, benign and malignant breast tissues obtained from cancer surgeries [J].Physics in Medicine and Biology, 2007, 52(20):6093-6115.
  • 5MEANEY P M, PAULSEN K D, CHANG J T, et al. Non-active antenna compensation for fixed-array microwave imaging: part Ⅱ imaging results [J].IEEE Trans on Medical Imaging, 1999, 18(6):508-518.
  • 6WINTERS D W, SHEA J D, HAGNESS S C, et al. Three-dimensional microwave breast imaging: dispersive dielectric properties estimation using patient-specific basis functions [J].IEEE Trans on Medical Imaging, 2009, 28(7):969-981.
  • 7WADBRO E, BERGGREN M. High contrast microwave tomography using topology optimization techniques [J].Journal of Computational and Applied Mathematics, 2010,234(6):1773-1780.
  • 8MEANEY P M, FANNING M W, RAYNOLDS T, et al. Initial clinical experience with microwave breast imaging in women with normal mammography [J].Academic Radiology, 2007, 14(2):207-218.
  • 9CIOCAN R, JIANG H. Model-based microwave image reconstruction: simulations and experiments [J].Medical Physics, 2004, 31(12):3231-3241.
  • 10JIANG Hua-bei, LI Chang-qing. Ultrasound-guided microwave imaging of breast cancer: tissue phantom and pilot clinical experiments [J].Medical Physics, 2005, 32(8):2528-2535.

引证文献2

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部